AQA Maths Statistics 3 Mark Scheme Pack
 $$
2006-2016
$$

AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MS03 Statistics 3

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Jor ft or F	follow through from previous	
	incorrect result	
CAO	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

Q	Solution	Marks	Total	Comments
1(a)	$\hat{p}=\frac{209}{250}=0.836$	B1		CAO
	$95 \% \mathrm{CI} \Rightarrow z=1.96$	B1		CAO
	CI for p :			
	$\sqrt{\hat{p}(1-\hat{p})}$	M1		Variance term
	$\hat{p} \pm z \sqrt{\frac{p(1 \quad P)}{n}}$	M1		Use of: $\hat{p} \pm z \times \sqrt{(\operatorname{Var}(\hat{p}))}$
	ie $\quad 0.836 \pm 1.96 \times \sqrt{\frac{0.836 \times 0.164}{250}}$	A1 \checkmark		\checkmark on \hat{p} and z; not on n
	ie $\quad 0.836 \pm 0.046$			
	or $\quad(0.790,0.882)$	A1	6	AWRT; accept 0.79
(b)	Value of $0.8(80 \%)$ is within CI	$\begin{aligned} & \text { B1 } \sqrt{\wedge} \\ & \uparrow \text { dep } \end{aligned}$		\checkmark on CI
	Council's clam is supported (at 5\% level)	B1才	2	\checkmark on CI
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$r=0.819$ to 0.82	B3		AWFW
	or $\quad r=0.81$ to 0.83	(B2)		AWFW
	$r=0.8 \text { to } 0.85$	(B1)		AWFW
	$\begin{array}{ll} \text { Attempt at } & \Sigma x \Sigma x^{2} \\ & \Sigma y \Sigma y^{2} \\ & \Sigma x y \end{array}$			$\begin{aligned} & 989,99321 \\ & 1717,296101 \\ & 170956 \end{aligned}$
	or attempt at $\quad S_{x x} S_{y y} S_{x y}$	(M1)		1508.9, 1292.1, 1144.7
	Attempt at a correct formula for r	(m1)		
	$r=0.819$ to 0.82	(A1)	3	AWFW
(b)	$\begin{aligned} & \mathrm{H}_{0}: \rho=0 \\ & \mathrm{H}_{1}: \rho>0 \end{aligned}$	B1		Both
	$\begin{array}{lr} \mathrm{SL} & \alpha=0.01(1 \%) \\ \mathrm{SS} & n=10 \end{array}$			
	CV $\quad r=0.7155$	B1		AWFW 0.715 to 0.716
	Calculated $r>$ Tabulated r	M1		Comparison
	Evidence (at 1% level) of a positive correlation between heart rate and systolic blood pressure	A1 \checkmark	4	\checkmark on r and CV
	Total		7	

MS03 (cont)

Q	Solution	Marks	Total	Comments
3				
(a)(i)	$\mathrm{P}(\mathrm{G} \cap \mathrm{I})=0.5 \times 0.9=0.45$	B1	1	CAO; or equivalent
(ii)	$\mathrm{P}(\mathrm{I})=(\mathrm{i})+\mathrm{P}(\mathrm{E} \cap \mathrm{I})+\mathrm{P}(\mathrm{F} \cap \mathrm{I})$	M1		3 possibilities
	$=0.45+(0.2 \times 0.6)+(0.3 \times 0.75)$	A1		≥ 1 correct new term
	$=0.45+0.12+0.225=0.795$	A1	3	CAO; or equivalent
(iii)	$\mathrm{P}(\mathrm{G} \mid \mathrm{I})=\frac{\mathrm{P}(\mathrm{G} \cap \mathrm{I})}{\mathrm{P}(\mathrm{I})}$	M1		Attempted use of Bayes' Theorem
	$=\frac{(\mathrm{i})}{(\mathrm{ii})}=\frac{0.45}{0.795}=0.566$	m1 A1	3	AWRT; or equivalent
(b)	$\mathrm{P}(\mathrm{E} \mid \mathrm{SD})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{SD})}{\mathrm{P}(\mathrm{SD})}$	M1		Correct use of Bayes' Theorem
	$=\frac{0.2 \times 0.25}{(0.2 \times 0.25)+(0.3 \times 0.15)}=$	A1		Numerator (B1 if no Bayes' Theorem)
	$\frac{0.05}{0.05+0.045}$	A1		Denominator (B1 if no Bayes' Theorem)
	$=\frac{0.05}{0.095}=0.526$	A1	4	AWRT; or equivalent
	Total		11	

MS03 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\mathrm{E}(\mathrm{R})=(6 \times 0.1)+(7 \times 0.6)+(8 \times 0.3)$			
	$=0.6+4.2+2.4=7.2$	B1		CAO
	$\mathrm{E}\left(R^{2}\right)=(3.6+29.4+19.2)=52.2$	B1		CAO
	$\operatorname{Var}(R)=\mathrm{E}\left(R^{2}\right)-(\mathrm{E}(R))^{2}$	M1		Use of
	$=52.2-51.84=0.36$	A1	4	CAO
(b)(i)	$\mathrm{E}(T)=7.2+10.9=18.1$	B1		\checkmark on $\mathrm{E}(\mathrm{R})$
	$\operatorname{Cov}(R, S)=\rho_{R S} \times \sqrt{\operatorname{Var}(R) \times \operatorname{Var}(S)}$	M1		Use of; or equivalent May be scored in (ii)
	$\begin{aligned} & \operatorname{Var}(T)=\operatorname{Var}(R)+\operatorname{Var}(S)+2 \operatorname{Cov}(R, S) \\ & =0.36+1.69+2 \times \frac{2}{3} \sqrt{0.36 \times 1.69} \end{aligned}$	M1		Use of; or equivalent May be scored in (ii)
	$=0.36+1.69+1.04=3.09$	A1	4	CAO
(ii)	$\mathrm{E}(\mathrm{D})=10.9-7.2=3.7$	B1 \checkmark		\checkmark on $\mathrm{E}(\mathrm{R})$
	$\operatorname{Var}(D)=\operatorname{Var}(S)+\operatorname{Var}(R)-2 \operatorname{Cov}(S, R)$			
	$=1.69+0.36-2 \times \frac{2}{3} \sqrt{1.69 \times 0.36}$			
	$=1.69+0.36-1.04=1.01$	B1	2	CAO
	Total		10	

MS03 (cont)

Q	Solution	Marks	Total	Comments
5	Letters/week ~ Po(12.25)			
(a)	Letters/4-week ~ $\mathrm{N}(49,49)$	B1		CAO; mean $=$ variance $=49$
	$\mathrm{P}\left(42 \leq X_{\mathrm{P}} \leq 54\right)=\mathrm{P}\left(41.5<X_{\mathrm{N}}<54.5\right)$	M1		Use of ± 0.5
	$=\mathrm{P}\left(\frac{41.5-49}{7}<Z<\frac{54.5-49}{7}\right)$	M1		Standardising (41.5, 42 or 42.5) or (53.5, 54 or 54.5) with C's μ and $\sqrt{\mu}$
	$=\mathrm{P}(-1.07<Z<0.79)$			
	$=\Phi(0.79)-(1-\Phi(1.07))$	m1		Area change
	$=0.78524-1+0.85769$			
	$=0.641$ to 0.644	A1	5	AWFW
(b)(i)	$98 \% \mathrm{CI} \Rightarrow z=2.3263$	B1		AWFW 2.32 to 2.33
	CI for $\lambda / 16$-week: $\hat{\lambda} \pm z \sqrt{\hat{\lambda}}$	M1		Use of expression
	ie $\quad 248 \pm 2.3263 \times \sqrt{248}$			
	$\longdiv { 1 5 . 5 }$	A1 \checkmark		\checkmark on z
	or $\quad 15.5 \pm 2.3263 \times \sqrt{\frac{15.5}{16}}$ ie $\quad 248 \pm 36.6$ or 15.5 ± 2.3	M1		Division by 16 somewhere
	or (13.2, 17.8)	A1	5	AWRT
(ii)	Value of 12.25 (196) is below CI	$\mathrm{B} 1 \checkmark$		\checkmark on CI; must use 12.25 (196)
	Rosa's belief is supported	$\begin{aligned} & \text { 个 dep } \\ & \text { B1 } \end{aligned}$		\checkmark on CI
	Total		12	

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\mathrm{E}(X)=\sum x \times \mathrm{P}(X=x)$	M1		Use of
	$=\sum_{x=0}^{\infty} x \times \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}=\lambda \times \sum_{x=1}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-1}}{(x-1)!}$	M1		Factor of λ Cancelling of x (Ignore change in limits)
	$=\lambda \times \sum \mathrm{P}(X=x)=\lambda \times 1=\lambda$	M1		AG; must be clear
	$\mathrm{G}(t)=\mathrm{e}^{\lambda t-\lambda} \quad$ or $\quad \mathrm{M}(t)=\mathrm{e}^{\lambda e^{\prime}-\lambda}$	(B1)		Either CAO
	Alternative $\mathrm{E}(X)=\left.\frac{\mathrm{dG}(t)}{\mathrm{d} t}\right\|_{1} \quad \text { or }\left.\quad \frac{\mathrm{dM}(t)}{\mathrm{d} t}\right\|_{0}$	(M1)		Use of either
	$\left[\lambda \mathrm{e}^{\lambda t-\lambda}\right]_{1} \quad \text { or } \quad\left[\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}\right]_{0}=\lambda$	(A1)	3	AG; correct derivation
(b)	$\mathrm{E}(X(X-1))=\sum_{x=0}^{\infty} x(x-1) \times \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}$	M1		Use of
	$=\lambda^{2} \times \sum_{x=2}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-2}}{(x-2)!}$	M1		Factor of λ^{2} Cancelling of $x(x-1)$ (Ignore change in limits)
	$=\lambda^{2} \times \sum \mathrm{P}(X=x)=\lambda^{2} \times 1=\lambda^{2}$	M1		AG; must justify
	$\begin{aligned} \operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\ & =\mathrm{E}(X(X-1))+\mathrm{E}(X)-(\mathrm{E}(X))^{2} \end{aligned}$	M1		
	$=\lambda^{2}+\lambda-\lambda^{2}=\lambda$	A1		AG; must be clear
	Alternative $\begin{aligned} & \operatorname{Var}(X)= \\ & \left.\frac{\mathrm{d}^{2} \mathrm{G}(t)}{\mathrm{d}^{2} t}\right\|_{1}+\lambda-\lambda^{2} \text { or }\left.\frac{\mathrm{d}^{2} \mathrm{M}(t)}{\mathrm{d}^{2} t}\right\|_{0}-\lambda^{2} \end{aligned}$	(M2)		use of either
	$=\left[\lambda^{2} \mathrm{e}^{\lambda t-\lambda}\right]+\lambda-\lambda^{2}=\lambda$	(A2)		AG; correct derivation
	$=\left[\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}+\lambda^{2} \mathrm{e}^{2 t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}\right]_{0}-\lambda^{2}=\lambda$	(A1)	5	AG; correct derivation
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\bar{y}=1193$	B1	1	CAO
(b)	$\mathrm{H}_{0}: \mu_{Y}-\mu_{X}=200$	B1		200 is not necessary
	$\mathrm{H}_{1}: \mu_{Y}-\mu_{X}>200$	B1		200 is necessary
	$\begin{array}{\|ll} \mathrm{SL} & \alpha=0.01(1 \%) \\ \mathrm{CV} & z=2.3263 \end{array}$	B1		AWFW 2.32 to 2.33
	$z=\frac{(\bar{y}-\bar{x})-200}{\sqrt{\sigma_{Y}} \sigma^{\prime}}=\frac{(1193-936)-200}{\sqrt{65^{\prime}}}$	M1		Numerator; 200 is not necessary
	$\sqrt{\frac{\sigma_{Y}^{2}}{n}+\frac{\sigma_{X}^{2}}{n}} \quad \sqrt{\frac{65^{2}}{10}+\frac{45^{2}}{20}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		Denominator \checkmark on (a)
	$\sqrt{n_{Y}} n_{X} \quad \sqrt{10} 20$			
	$=2.48$ to 2.5	A1		AWFW
	Evidence (at 1% level) to support the claim	A1 \checkmark	8	\checkmark on z and CV
(c)(i)	$\begin{aligned} & \mathrm{CV}(\bar{y}-\bar{x}): \\ & 200+z(\text { denominator in }(\mathrm{b})) \end{aligned}$	M1		May be scored in (b)
	ie $\quad 200+2.3263 \times \sqrt{523.75}$			
	($=253.24$)	A1	2	AG; must justify
(ii)	Power $=1-\mathrm{P}$ (Type II error)	M1		Use of
	$=1-\mathrm{P}\left(\right.$ accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false $)$	M1		Use of; or equivalent
	$=1-P\left(Z<\frac{253.24-275}{\sqrt{523.75}}\right)$	M1		Standardising 253.24 using 275 and C's denominator in (b)
	$=1-\Phi(-0.95)=\Phi(0.95)$	m1		Area change
	$=0.83$	A1	5	AWRT
(iii)	Probability of accepting that difference in mean weights is more than $\mathbf{2 0 0}$ grams	B1		Not in context \Rightarrow max of 2
	when, in fact, it is $\mathbf{2 7 5}$ grams	B1		
	is $\mathbf{0 . 8 3}$ (or 83%)	B1	3	\checkmark on (ii)
	Total		19	
	TOTAL		75	

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MS03 Statistics 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Jor ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figures
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

Q	Solution	Marks	Total	Comments
1(a)	Samples are independent or random	B1		
	98\% $\Rightarrow z=2.3263$	B1		AWFW 2.32 to 2.33
	CI for $\mu_{1}-\mu_{2}$ is:			
	$s_{S}^{2} s_{A}$	M1		Form
	$\left(\bar{x}_{S}-\bar{x}_{A}\right) \pm z \times \sqrt{\frac{\sigma_{S}}{n_{S}}+\frac{\rho_{A}}{n_{A}}}$	A1		Allow: sigmas, $A \& B$ or $1 \& 2$ and $n-1$ Correct
	(19268-17896)			
	$7321^{2} \quad 8205^{2}$	A1		on z only $S_{D}=7830 \text { to } 7850$
	ie $1372 \pm(1805$ to 1820$)$			$1372 \pm(1830$ to 1845$)$
	or $(-450$ to $-430,3170$ to 3200$)$	A1	6	AWFW
(b)	Confidence interval includes zero so (at 5% level)	B1 $\uparrow \operatorname{dep} \uparrow$		\checkmark on CI; OE
	Mean starting salaries may be equal	B1才	2	\checkmark on CI; OE
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$\mathrm{P}(\geq 18 \mid$ Road $)=0.85$	B1	1	CAO; OE; not 85
(b)	$\begin{aligned} & \mathrm{P}(18 \text { to } 64)= \\ & \mathrm{P}(\text { Route }) \times \mathrm{P}(18 \text { to } 64 \mid \text { Route })= \end{aligned}$	M1		Use of 3 possibilities, each the product of 2 probabilities
	$(0.25 \times 0.80)+(0.60 \times 0.35)+(0.55 \times 0.40)$	A1		At least 1 term correct
	$=0.20+0.21+0.22=0.63$	A1	3	CAO; OE
(c)	$\mathrm{P}(\mathrm{FR} \cap>64)=\mathrm{P}(\mathrm{FR}) \times \mathrm{P}(>64 \mid \mathrm{FR})$			
	$=0.35 \times 0.15$	B1		Correct expression
	$=0.052$ to 0.053	B1	2	AWFW (0.0525)
(d)	$\mathrm{P}(\mathrm{FR} \mid>64)=\underline{(\mathrm{c})}$	M1		answer (c)
	$\overline{\mathrm{P}(>64)}$	M1		$\overline{\sum(3 \times 2) \text { probabilities }}$
	$\frac{0.0525}{(0.25 \times 0.05)+(0.35 \times 0.5)+(0.40 \times 0.35)}$	A1		
	$\overline{(0.25 \times 0.05)+(0.35 \times 0.15)+(0.40 \times 0.35)}$	A1		At least 2 terms correct
	$=\frac{0.0525}{0.0125+0.0525+0.1400}=\frac{0.0525}{0.205}$	A1		CAO
	$=0.256 \text { or } \frac{21}{82}$	A1	5	AWRT/CAO; OE
	Total		11	

MS03 (cont)

Q	Solution	Marks	Total	Comments			
3(a)	$\begin{aligned} & \mathrm{H}_{0}: p_{\mathrm{K}}=p_{\mathrm{S}} \\ & \mathrm{H}_{1}: p_{\mathrm{K}} \neq p_{\mathrm{S}} \end{aligned}$	B1		Both; OE; allow A\&B or 1\&2			
	$\begin{array}{rlrl} \text { SL } r & \alpha & =0.05 \\ \text { CV }\|z\| & =1.96 \end{array}$	B1		CAO			
	$\hat{p}=\frac{(150 \times 0.28)+(250 \times 0.34)}{400}$	M1		Used			
	$=\frac{127}{400} \text { or } 0.317 \text { to } 0.318$	A1		CAO/AWFW (0.3175)			
	$z=\frac{\left(\hat{p}_{\mathrm{K}}-\hat{p}_{\mathrm{S}}\right)-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{\mathrm{K}}}+\frac{1}{n_{\mathrm{S}}}\right)}}$	M1		Used; accept unpooled denominator			
	$\|z\|=\frac{\|0.28-0.34\|}{\sqrt{0.3175 \times 0.6825\left(\frac{1}{150}+\frac{1}{250}\right)}}$	A1 \checkmark		\checkmark on \hat{p}; accept no pooling			
	$=\|1.24\|$ to $\|1.25\|$	A1		AWFW; \|1.26	to	1.27	
	Thus accept H_{0} as $\|z\|<1.96$	A1 \checkmark		\checkmark on z and CV with same sign			
	Thus no evidence, at 5% level, of a difference between two proportions of male customers in two salons	E1 \checkmark	9	\checkmark on z and CV with same sign In context and qualified			
(b)	$\begin{array}{\|l} \hline \text { Zero } \\ \text { since } \end{array}$	B1		CAO			
	Cannot make a Type I error when H_{0} is false	B1	2	OE			
	Total		11				

MS03 (cont)

Q	Solution	Marks	Total	Comments
4	98\% $\Rightarrow z=2.5758$	B1		AWFW 2.57 to 2.58
	CI width is $2 \times \frac{z \sigma}{\sqrt{n}}$	M1		Used; allow $\frac{z \sigma}{\sqrt{n}}$
	Thus $2 \times \frac{2.5758 \times 0.08}{\sqrt{n}}=0.05$	A1		OE; \checkmark on z; allow no ' $2 \times$ '
	Thus $\sqrt{n}=8.24256$	m1		Solving for \sqrt{n} or n
	Thus $n=67.9 \Rightarrow 68$	A1		AWRT; \checkmark on z
	Thus, to nearest 5, $n=70$	A1	6	CAO
	Total		6	
5	$D=\sum^{3} X_{i}-\sum^{2} Y_{i} \quad \text { or } \quad D^{\prime}=\sum^{2} Y_{i}-\sum^{3} X_{i}$	M1		Used or implied
	have means $\begin{aligned} & \mu=162-166=-4 \\ & \mu=166-162=+4 \end{aligned}$	B1		CAO either
	and variance $\begin{aligned} \sigma^{2}=\left(3 \times 2^{2}\right)+\left(2 \times 3^{2}\right) & =12+18 \\ & =30 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Use of $[a \times \operatorname{Var}(Z)]$; implied CAO
	$\begin{aligned} & \mathrm{P}\left(\sum^{3} X_{i}<\sum^{2} Y_{i}\right)= \\ & \mathrm{P}(D<0) \text { or } \mathrm{P}\left(D^{\prime}>0\right)= \end{aligned}$	M1		Used or implied
	$\mathrm{P}\left(Z>\frac{0-(-4)}{\sqrt{30}}\right) \text { or } \mathrm{P}\left(Z>\frac{0-(+4)}{\sqrt{30}}\right)=$	m1		Standardising 0 using μ and $\sqrt{\sigma^{2}}$
	$\mathrm{P}(Z<+0.73)$ or $\mathrm{P}(Z>-0.73)=$			
	0.767 to 0.768	A1	7	AWFW
	Total		7	

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{E}(X)=\sum_{x=0}^{n} x \times\binom{ n}{x} p^{x}(1-p)^{n-x}$	M1		Use of $\sum x \times \mathrm{P}(X=x)$
	$=\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}$	M1		Expansion of ${ }^{n} \mathrm{C}_{x}$; cancelling of x (Ignore limits)
	$=n p \times \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}$	M1		Factors of n and p (Ignore limits)
	$=n p \times \sum \mathrm{P}(X=x) \mid \mathrm{B}(n-1, p)=n p$	M1	4	AG; must be convincing
(ii)	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$	M1		Used
	$\begin{aligned} & =\left[\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)\right]+\mathrm{E}(X)-(\mathrm{E}(X))^{2} \\ & =n(n-1) p^{2}+n p-n^{2} p^{2} \end{aligned}$	m1		Attempted
	$=n p(1-p)$	A1	3	AG; must be convincing
(iii)	Thus $n p(1-p)=3(1-p)=2.97$	M1		Substituting μ in σ^{2}
	Thus $1-p=\frac{2.97}{3}=0.99$			
	Thus $p=0.01$	A1		CAO
	and $n=300$	A1	3	CAO
(iv)	$\mathrm{B}(300,0.01) \sim \mathrm{Po}(3)$	B1		CAO; PI
	$\mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2)$	M1		Must be applied to Poisson
	$=1-0.4232=0.577$	A1	3	AWRT

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)			13	
(b)	$Y \sim \mathrm{~B}(500,0.45)$ or $Y \sim$ (normal) with mean $\mu=225$ and	B1		PI
	variance $\sigma^{2}=123.75$ or standard deviation $\sigma=11.124$	B1		AWFW 123 to 124 AWFW 11.05 to 11.15
	(At least) half $\Rightarrow(\geq) 250$	B1		CAO
	$\mathrm{P}\left(Y_{\mathrm{B}} \geq 250\right)=\mathrm{P}\left(Y_{\mathrm{N}}>249.5\right)=$	B1		CAO
	$\mathrm{P}\left(Z>\frac{249.5-225}{\sqrt{123.75}}\right)=$	M1		Standardising $249.5,250$ or 250.5 with c's μ and $\sqrt{\sigma^{2}}$
	$\mathrm{P}(Z>2.20)=1-\mathrm{P}(Z<2.20)$	m1		Area change
	$=0.0138$ to 0.014	A1	7	
	Note:			
	Use of $\frac{0.5-0.45}{\sqrt{0.000495}} \Rightarrow$ max of 5 marks			Use of distribution of \hat{p}
	Use of $\frac{0.499-0.45}{\sqrt{0.000495}} \Rightarrow$ max of 7 marks			Use of distribution of \hat{p} with continuity correction
	Total		20	

MS03 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\mathrm{H}_{0}: \lambda=13$	B1		CAO; OE
	$\mathrm{H}_{1}: \lambda<13$	B1		CAO; OE
	$\mathrm{P}(R \leq 10 \mid \mathrm{Po}(13)$	M1		Used or implied
	$=0.2517$	A1		AWFW 0.251 to 0.252
	Prob of $0.2517>0.10(10 \%)$ $z=-0.83$ to $-0.70>-1.28$	M1		Comparison of prob with 0.10 Comparison of z with -1.28
	Thus no evidence, at 10% level, of a reduction in the mean value of R	A1	6	\checkmark on probability or z In 'context' and qualified
(b)	Require $\mathrm{P}(R \leq r \mid \mathrm{Po}(13)) \approx 0.10$	M1		Stated or implied
	Critical Region is $R \leq 8$ or $R<9$	A1	2	Accept $R=8$ May be scored in (a)
(c)	Require P (accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false)	B1		OE; PI
	$=\mathrm{P}(R>8 \mid \mathrm{Po}(6.5))$	M1		Use of $\mathrm{Po}(6.5)$
	$=1-\mathrm{P}(R \leq 8 \mid \operatorname{Po}(6.5))$	m1		
	$=1-0.7916$			
	$=0.208$ to 0.209	A1	4	AWFW (0.2084)
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MS03 Statistics 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
for ft or F	follow through from previous		
incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figuress)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

MS03 (cont)

MS03 (cont)

MS03 (cont)

MS03 (cont)

Q	Solution	Marks	Total	Comments
6 (a)(i) (ii)	$E(F)=128+112=240$	B1		CAO
	$\operatorname{Cov}(X, Y)=-0.4 \times \sqrt{50 \times 50}=\mathbf{- 2 0}$	M1		Used; or equivalent
	$\operatorname{Var}(F)=50+50+(2 \times-20)=\mathbf{6 0}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	$\mathrm{V}(X)+\mathrm{V}(Y)+2 \operatorname{Cov}(X, Y)$ used CAO; AG
(b)(i)	$E(T)=240+75=315$	B1 \checkmark		ft on (a)(i)
	$\operatorname{Var}(T)=60+36=96$	B1	2	CAO
(ii)	$\mathrm{E}(M)=240-(3 \times 75)=15$	B1 \checkmark		ft on (a)(i)
	$\begin{aligned} \operatorname{Var}(M)=60+ & \left\{\left(-3^{2}\right) \times 36\right\} \\ & =60+324=\mathbf{3 8 4} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	$\mathrm{V}(F)+3^{2} \mathrm{~V}(S)$ used CAO
(c)(i)	$\mathrm{P}(T>300)=\mathrm{P}\left(Z>\frac{300-315}{\sqrt{96}}\right)$	M1		Standardising 300 or 300.5 using (b)(i)
	$=\mathrm{P}(\mathrm{Z}>-1.53)=\mathrm{P}(\mathrm{Z}<1.53)$	m1		Area change
	$=0.936$ to 0.938	A1	3	AWFW
(ii)	$\mathrm{P}\left(S>\frac{X+Y}{3}\right)=$	M1		Used; or equivalent
	$\mathrm{P}(3 S>X+Y)=\mathrm{P}(3 S>F)=$	M1		Attempt to change to M
	$\mathrm{P}(F-3 S<0)=\mathrm{P}(M<0)$	A1		Or equivalent
	$=\mathrm{P}\left(Z<\frac{0-15}{\sqrt{384}}\right)$	M1		Standardising 0 using (b)(ii)
	$=\mathrm{P}(\mathrm{Z}<-0.765)=1-\mathrm{P}(\mathrm{Z}<0.765)$	m1		Area change
	$=0.22(0)$ to 0.225	A1	6	
	Total		18	

MS03 (cont)

General Certificate of Education

Mathematics 6360

MS03 Statistics 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

MS03 (cont)

Q	Solution	Marks	Total	Comments
2(a)(i)	$\begin{aligned} \mathrm{P}(\mathrm{~B} \& \mathrm{~B})= & (0.30 \times 0.80)+ \\ & (0.55 \times 0.10)+(0.15 \times 0.30) \end{aligned}$	M1		Use of $\mathbf{3}$ possibilities each the product of 2 probabilities
	$=0.24+0.055+0.045=0.34$	A1	2	CAO; AG
(ii)	$\mathrm{P}(\mathrm{HB} \cap$ Coastal $)=0.55 \times 0.65$	M1		Can be implied by correct answer
	$=143 / 400$ or 0.357 to 0.358	A1	2	CAO/AWFW (0.3575)
(iii)	$\mathrm{P}(\text { Coastal } \mid \mathrm{HB})=\underline{\mathrm{P}(\text { Coastal } \cap \mathrm{HB})}$	M1		answer to (ii)
	$\mathrm{P}(\text { Coastal } \mid \mathrm{HB})=\frac{\mathrm{P}(\mathrm{HB})}{\mathrm{P}}$	M1		$\overline{\sum(3 \times 2) \text { probabilities }}$
	$=\frac{0.3575}{(0.3 \times 0.15)+(0.3575)+(0.15 \times 0.5)}$	A1F		F on (ii)
	$=\frac{0.3575}{0.4775}=143 / 191 \text { or } 0.747 \text { to } 0.75$	A1	4	CAO/AWFW (0.74869)
(b)	$\begin{aligned} & \mathrm{P}(\text { City } \mid \mathrm{HB})= \\ & \frac{0.3 \times 0.15}{\mathrm{P}(\mathrm{HB})}=\frac{0.045}{0.4775}=\frac{90}{955} \end{aligned}$	M1		
	$\begin{aligned} & \mathrm{P}(\text { Country } \mid \mathrm{HB})= \\ & \frac{0.15 \times 0.5}{\mathrm{P}(\mathrm{HB})}=\frac{0.075}{0.4775}=\frac{30}{191} \end{aligned}$	M1		Or $\left(1-(a)(i i i)-\frac{0.045}{0.4775}\right)$
	$\begin{aligned} & \text { Thus Probability }= \\ & \frac{0.045}{\mathrm{P}(\mathrm{HB})} \times \frac{0.3575}{\mathrm{P}(\mathrm{HB})} \times \frac{0.075}{\mathrm{P}(\mathrm{HB})} \end{aligned}$	M1		Multiplication of 3 different probabilities
	Multiplied by $3!=6$	B1		CAO
	$=0.09424 \times 0.74869 \times 0.15707 \times 6$			
	$=0.063$ to 0.068	A1	5	AWFW (0.06649)
	Total		13	

MS03 (cont)

Q	Solution	Marks	Total	Comments
3	$98 \%(0.98) \mathrm{CI} \Rightarrow z=2.32$ to 2.33	B1		AWFW (2.3263)
	CI width is $2 \times z \times \sqrt{\frac{p(1-p)}{n}}$	M1		Used; allow $z \times \sqrt{\frac{p(1-p)}{n}}$
	$p=0.35$ or 0.50	B1		
	Thus $2 \times 2.3263 \times \sqrt{\frac{0.35 \times 0.65}{n}}=0.1$	A1F		Or equivalent F on z; allow no multiplier of 2 and/or $p=0.50$
	Thus $\sqrt{n}=\frac{2 \times 2.3263}{0.1} \times \sqrt{0.35 \times 0.65}$	m1		Solving for \sqrt{n} or n
	Thus $\quad n=492.5 \quad(p=0.35)$ or $\quad n=541.2 \quad(p=0.50)$			
	Thus to nearest 10 $n=500 \text { or } 490$	A1	6	Either
	Notes: No ' $\times 2$ ' gives $n=123.1$ No ' $\times 2$ ' and $p=0.50$ gives $n=135.3$			
	Total		6	

MS03 (cont)

Q	Solution	Marks	Total	Comments
4	$\begin{gathered} \mathrm{H}_{0}: \mu_{X}-\mu_{Y}=15 \\ \mathrm{H}_{1}: \mu_{X}-\mu_{Y}>15 \\ \mathrm{SL} \alpha=1 \%(0.01) \\ \mathrm{CV} z=2.32 \text { to } 2.33 \\ z=\frac{(\bar{x}-\bar{y})-15}{\sqrt{\frac{s_{X}^{2}}{n_{X}}+\frac{s_{Y}^{2}}{n_{Y}}} \text { or } z / t=\frac{(\bar{x}-\bar{y})-15}{\sqrt{s_{P}^{2}\left(\frac{1}{n_{X}}+\frac{1}{n_{Y}}\right)}}} \begin{array}{c} s_{P}^{2}=\frac{\left(64 \times 3.4^{2}\right)+\left(74 \times 2.8^{2}\right)}{65+75-2} \\ z=\frac{1320}{138}=9.56522 \\ \mathrm{CV}^{2} t=2.36 \\ \frac{(40.7-24.4)-15}{\frac{3.4^{2}}{65}+\frac{2.8^{2}}{75}}=\frac{1.3}{\sqrt{0.28238}} \\ =2.44 \text { to } 2.45 \end{array} \end{gathered}$ OR $\begin{array}{r} z / t=\frac{(40.7-24.4)-15}{\sqrt{\frac{1320}{138}\left(\frac{1}{65}+\frac{1}{75}\right)}}=\frac{1.3}{\sqrt{0.27469}} \\ =2.48 \end{array}$ Thus evidence, at 1% level, to support Holly's belief	B1		Or equivalent Accept $\mathrm{H}_{0}: \mu_{X}-\mu_{Y}=0$
		B1		Or equivalent
		B1		AWFW If H_{1} involves ' \neq ' then accept 2.57 to 2.58 (2.5758) AWFW
		(B1)		If H_{1} involves ' \neq ' then accept 2.60 to 2.62
		M1		Used Allow 'no - 15'
				$s_{P}=3.09277$
		A1		Numerator; allow 'no -15'
		A1		Denominator
		A1		AWFW (2.4464) 'no -15' gives $z=30.674$
		(A1)		Numerator; allow 'no -15'
		(A1)		Denominator
		(A1)		AWRT (2.4804) $\text { 'no }-15 \text { ' gives } z=31.100$
		A1F	8	F on z and CV
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
5	$\underline{X \sim \mathrm{~B}(n, p)}$			
(a)	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$	M1		Used; may be implied
	$\begin{aligned} & =\mathrm{E}[X(X-1)]+\mathrm{E}(X)-[\mathrm{E}(X)]^{2} \\ & = \\ & =n(n-1) p^{2}+n p-n^{2} p^{2} \end{aligned}$	M1		Rearranging \& substitution
	$=n p-n p^{2}=n p(1-p)$	A1		Or equivalent
	OR			
	$\begin{aligned} \mathrm{E}[X(X-1)] & =\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X) \\ & =n(n-1) p^{2}=n^{2} p^{2}-n p^{2} \end{aligned}$	(M1)		Expansion \& substitution
	$\begin{aligned} & \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\ & =\left\{n^{2} p^{2}-n p^{2}+\mathrm{E}(X)\right\}-n^{2} p^{2} \end{aligned}$	(M1)		Used; may be implied
	$=n p-n p^{2}=n p(1-p)$	(A1)	3	Or equivalent
(b)(i)	Mean $=n p=36 \quad \mathrm{SD}=\sqrt{n p(1-p)}=4.8$	B1		Both CAO
	Thus $\quad 36(1-p)=4.8^{2}$	M1		Attempt to solve for p or n
	Thus $\quad n=100 \& p=0.36$	A1	3	Both CAO
(ii)	$\mathrm{P}(30<x<40)=$			
	$\mathrm{P}\left(Z<\frac{39.5-36}{4.8}\right)-\mathrm{P}\left(Z<\frac{30.5-36}{4.8}\right)=$	M1 B1		Standardising (39.5, 40 or 40.5) or (29.5, 30 or 30.5) with 36 and 4.8 and/or (36-x) Use of $39.5 \& 30.5$
	$\mathrm{P}(Z<0.73)-\mathrm{P}(Z<-1.15)=$			
	$\mathrm{P}(\mathrm{Z}<0.73)-[1-\mathrm{P}(Z<1.15)]=$	m1		Area change
	$0.76730-[1-(0.87286$ to 0.87493$)]=$			
	0.64 to 0.643	A1	4	AWFW (0.64112)
	Total		10	

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\mathrm{E}(X)=\underline{\mathbf{2 . 2}}$	B1		CAO
	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-2.2^{2}=$	M1		Used; or equivalent
	$6.8-4.84=1.96$	A1	3	CAO
(b)(i)	$\mathrm{E}(S)=\mathrm{E}(X)+2.0=4.2$	B1F		F on (a)
	$\operatorname{Var}(S)=\operatorname{Var}(X)+1.5+2 \times(-0.43)$	M1		Used for S or D
	$=2.6$	A1F		F on (a)
(ii)	$\mathrm{E}(D)=\mathrm{E}(X)-2.0=0.2$	B1F		F on (a)
	$\operatorname{Var}(D)=\operatorname{Var}(X)+1.5-2 \times(-0.43)$			
	$=4.32$	A1F	5	F on (a)
(c)	$\underline{L \sim \mathrm{~N}\left(2.31,0.89^{2}\right) \quad M \sim \mathrm{~N}\left(2.04,0.43^{2}\right)}$			
	$T=L+M \sim \mathrm{~N}(4.35,0.977)$	B1 B1		Both CAO; $\quad \mathrm{SD}=0.98843$
	$\mathrm{P}(T>5)=\mathrm{P}\left(Z>\frac{5-4.35}{\sqrt{0.977}}\right)$	M1		Standardising 5 or 5.01 using C's mean \& SD
	$=\mathrm{P}(Z>0.66)=1-\mathrm{P}(Z<0.66)$	m1		Area change
	0.25 to 0.26	A1	5	AWFW (0.25540)
	Total		13	

MS03 (cont)

Q	Solution	Marks	Total	Comments
7	$\underline{X_{\mathrm{D}}} \sim \operatorname{Po}(24)$			
(a)	$T=X_{\text {LD }} \sim \operatorname{Po}(\mathbf{1 4 4)}$	B1		CAO
	Thus $\quad T \sim$ approx $\mathrm{N}(144,144)$	M1		Normal with $\mu=\sigma^{2}$
	$\mathrm{P}\left(T_{\mathrm{Po}} \leq 150\right) \approx \mathrm{P}\left(T_{\mathrm{N}}<\mathbf{1 5 0 . 5}\right)$	B1		CAO
	$=\mathrm{P}\left(Z<\frac{150.5-144}{12}\right)$	M1		Standardising (149.5, 150 or 150.5) with $\mu>24$ and $\sqrt{\mu}$
	$=\mathrm{P}(Z<0.54)=0.705$ to 0.71	A1	5	AWFW (0.70598)
(b)(i)	$\begin{aligned} & \mathrm{H}_{0}: \lambda(\text { or mean })=2(\text { or } 10) \\ & \mathrm{H}_{1}: \lambda(\text { or mean })>2(\text { or } 10) \end{aligned}$	B1		Both; or equivalent
	$\mathrm{P}(Y \geq 17)=1-\mathrm{P}(Y \leq 16)$	M1		Accept $1-\mathrm{P}(Y \leq 17)$
	$=1-0.0 .9730=0.027$	A1		AWRT
	<0.10 (10\%)			Comparison of probability with 0.1
	[$z=2.05$ to $2.38>1.2816]$			Comparison of z with 1.2816 or 1.6449
	Thus evidence, at 10% level, of increase in mean daily number of requests	A1F	5	F on probability or on z
(ii)	CV of Y is such that $\mathrm{P}(Y \geq \mathrm{CV}) \leq 0.10$ (10\%)	M1		Can be implied by 13,14 or 15 Accept $\mathrm{P}(Y=\mathrm{CV})=0.10$
	Thus $\quad \mathrm{P}(Y \leq \mathrm{CV}-1) \geq 0.90$	M1		Can be implied by 13,14 or 15 Accept $\mathrm{P}(Y=\mathrm{CV})=0.90$
	Thus $\quad \mathrm{CV}=15$	A1	3	CAO
(iii)	Power $\quad=1-\mathrm{P}($ Type II error $)$	B1		Or equivalent
	$=\mathrm{P}\left(\text { accept } \mathrm{H}_{1} \mid \mathrm{H}_{1} \text { true }\right)$			Stated or implied use
	$\lambda=5 \times 3=15$	B1		Stated or implied use of $\operatorname{Po}(15)$
	$\text { Thus power }=\mathrm{P}(Y \geq \mathrm{CV})$	M1		Attempt at a probability based on C's CV from (ii) and $\operatorname{Po}(15)$
	$=1-0.4657=0.53 \text { to } 0.54$	A1	4	AWFW (0.5343)
	Total		17	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics
MS03

Statistics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & \mathrm{H}_{0}: \rho=0 \\ & \mathrm{H}_{1}: \rho \neq 0 \end{aligned}$ SL $\quad \alpha=0.05$ (5\%) CV $\quad r=(\pm) 0.404$ Calculated $r=0.336<$ Tabulated r No evidence, at 5% level, of a correlation between stem length and cup diameter of matsutake mushrooms	B1 B1 M1 A1F	4	Both AWRT (0.4044) $\mathrm{H}_{1}: \rho>0 \Rightarrow r=0.3438$ Comparison F on CV At 5\% level, accept hypothesis of no correlation
	Total		4	
2(a)	$99 \% \Rightarrow z=2.57$ to 2.58	B1		AWFW (2.5758)
	CI for $\mu_{R}-\mu_{D}$ is $\left(\bar{x}_{R}-\bar{x}_{D}\right) \pm z \times \sqrt{\frac{s_{R}^{2}}{n_{R}}+\frac{s_{D}^{2}}{n_{D}}}$	M1 A1		Form Allow $\left(\frac{n s^{2}}{n-1}\right)$ or $(n-1)$ Correct expression
	$\text { ie } \quad(225-219) \pm 2.5758 \sqrt{\frac{5^{2}}{50}+\frac{8^{2}}{75}}$	A1F		Or equivalent F on z only
	ie $\quad 6 \pm 3$ or $(3,9)$ Note: Use of pooled $s^{2}=5961 / 123=48.46341 \Rightarrow$ $6 \pm 3.3 \Rightarrow$ max of B1 M1 A0 A1F A0 (3)	A1	5	CAO/AWRT or AWRT
(b)	CI does not include 0/zero	B1F		F on (a)
	Evidence of a difference in mean weights	$\begin{aligned} & \text { B1F } \\ & \text { dep } \end{aligned}$	2	F on (a) Dependent on CI but not on 0/zero
(c)	Price, size, quality, taste, presentation, organic, marketing, stall position, etc	B1	1	Any sensible reason
	Total		8	

MS03 (cont)

MS03 (cont)

MS03 (cont)

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\hat{p}=\frac{28}{175}=\mathbf{0 . 1 6}$	B1		CAO; or equivalent
	95\% $\Rightarrow \mathrm{z}=1.96$	B1		AWRT
	Approximate CI for p is $\hat{p} \pm z \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	M1		Used
	ie $0.16 \pm 1.96 \sqrt{\frac{0.16 \times 0.84}{175}}$	A1F		Or equivalent F on \hat{p} and z
	ie 0.16 ± 0.054 or $(0.106,0.214)$	A1	5	CAO/AWRT or AWRT (0.0543)
(ii)	CI does include 0.2 (20\%)	B1F		F on (i)
	No evidence to support councils' claim	B1F	2	$\mathrm{F} \text { on (i) }$ Dependent on CI and on 0.2
(b)(i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.40(40 \%) \\ & \mathrm{H}_{1}: p<0.40 \end{aligned}$	B1		Both
	Using B ($50,0.4$ (40%)	M1		May be implied
	$\mathrm{P}(X \leq 16)=0.156$	A1		AWRT (0.1561)
	Calculated probability > 0.10 (10\%)	M1		Comparison
	No evidence, at 10% level, to support council's claim Special Case: Normal approximation $z=\mathbf{- 1 . 1 5 (4 7)}$ B1 $\quad C V=\mathbf{1 . 2 8 (1 6) B 1}$ Conclusion B1F Max of 4 marks	A1F	5	F on probability v 0.10 or 0.05 At 10% level, accept (at least) 40\% Allow B1 for hypotheses $p=0.123$ to 0.125 v 0.10 B 1 B 1 F on z and CV
(ii)	Require $\mathrm{P}(X \leq x) \leq 0.10$	M1		May be implied Ignore any reasoning if ' 15 ' stated
	$\Rightarrow \mathrm{CV}=15 \quad(\mathrm{CR} \leq 15)$	A1	2	CAO; or equivalent
(iii)	P (Type II error) $=\mathrm{P}$ (accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false)	B1		Stated or used; or equivalent
	$=\mathrm{P}(X>\mathrm{CV}$ or $X \geq \mathrm{CV})$	M1		```Attempt at a probability >or \(\geq\) C's CV from (ii)```
	$=1-(0.8369$ or 0.7481)	M1		Ignore ' 1 -
		A1	4	AWRT
	Total		18	

General Certificate of Education (A-level) June 2011

Mathematics

MS03

(Specification 6360)

Statistics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

Q	Solution	Marks	Total	Comments
1 (a)	$\begin{aligned} & \mathrm{H}_{0}: p=0.25(25 \%) \\ & \mathrm{H}_{1}: p>0.25 \end{aligned}$ $\text { SL } \quad \alpha=0.02(2 \%)$	B1		Both
	$\text { CV } \quad z=2.05 \text { to } 2.06$	B1		AWFW Allow 2.32 to 2.33 if $H_{1}: p \neq 0.25$
	$\hat{p}=\frac{108}{375}=\mathbf{0 . 2 8 8}$	B1		CAO
	$z=\frac{0.288-0.25}{\sqrt{\frac{0.25 \times 0.75}{375}}}=\mathbf{1 . 7 0}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Allow use of 0.288 in denominator AWRT
	or			$\mathrm{P}(X \geq 108 \mid n=375, p=0.25)=\mathbf{0 . 0 5 2}$
	$z=\frac{108(-0.5)-93.75}{\sqrt{375 \times 0.25 \times 0.75}}=\mathbf{1 . 7 0}(\text { or 1.64) }$	(M1) (A1)		Allow use of 0.288 in denominator AWRT
	Thus, no evidence, at 2% level, to support consumer report's claim	AF1	6	F on CV and z-value or F on 2% and probability
(b)	Can be considered to be a random sample	B1	1	
		Total	7	

MS03 (cont)

Q	Solution	Marks	Total	Comments
2 (a)	$98 \% \Rightarrow z=2.32$ to 2.33	B1		AWFW (2.3263)
	CI for λ is: $\hat{\lambda} \pm z \times \sqrt{\hat{\lambda}} \quad \text { or } \quad \bar{x} \pm z \times \sqrt{\frac{\bar{x}}{n}}$ ie	M1		Form; allow $\hat{\lambda} \pm z \times \sqrt{\frac{\hat{\lambda}}{n}}$
	$108 \pm 2.3263 \times \sqrt{108}$ or	AF1		$\text { F on } z \text { only; allow } 108 \pm z \times \sqrt{\frac{108}{13}}$
	$\frac{108}{13} \pm 2.3263 \times \sqrt{\frac{108}{13^{2}}}$	(AF1)		F on z only; allow $\frac{108}{13} \pm z \times \sqrt{\frac{108}{13}}$
	Dividing by 13 or equivalent to obtain a correct numerical expression	A1		May be implied
	Thus 8.31 ± 1.86 or $(6.45,10.2)$	A1	5	AWRT
	Note: For incorrect numerical expressions the maximum marks are B1 M1 AF1 A0 A0			
(b)	1 per 24 hours $\Rightarrow 7$ per week			
	CI includes 7	BF1		F on (a); must use 7 or $1 \mathrm{v} \mathrm{CI} / 7$
	No reason, at 2% level, to dispute station officer's claim	Bdep1	2	Or equivalent Dependent on BF1
		Total	7	

MS03 (cont)

Q	Solution	Marks	Total	Comments
3 (a)(i)	$\mathrm{P}(\mathrm{G})=0.15$	B1	1	CAO
(ii)	$\mathrm{P}(\mathrm{A} \cap \leq 1)=0.60 \times 0.55=\mathbf{0 . 3 3}$	B1	1	CAO
(iii)	$\begin{aligned} \mathrm{P}(\leq 24)= & (0.60 \times 0.80)+(0.25 \times 0.85) \\ & +(0.15 \times 0.75) \end{aligned}$	M1		May be implied
	$=0.48+0.2125+0.1125=\mathbf{0 . 8 0 5}$	A1	2	CAO
(iv)	$\mathrm{P}(\mathrm{~B} \mid \leq 24)=\frac{\mathrm{P}(B \cap \leq 24)}{\mathrm{P}(\leq 24)}$	M1		Used; may be implied
	$=\frac{0.25 \times 0.85}{(\mathrm{iii})}=\frac{0.2125}{0.805}$	AF1		F on (iii)
	$=0.264$	A1	3	AWRT
(b)(i)	$\mathrm{P}(3$ @ B $\mid \leq 24)=[(\mathrm{a})(\mathrm{iv})]^{3}$	M1		Used; may be implied
	$=0.018$ to 0.0185	A1	2	AWFW (0.01839)
(ii)	$\begin{aligned} & \mathrm{P}(\text { same station } \mid \leq 24) \\ & =[\mathrm{P}(\mathrm{~A} \mid \leq 24)]^{3}+(\mathrm{b})(\mathrm{i})+[\mathrm{P}(\mathrm{G} \mid \leq 24)]^{3} \end{aligned}$	M1		Used; may be implied
	$=\left(\frac{0.48}{0.805}\right)^{3}+(\mathrm{b})(\mathrm{i})+\left(\frac{0.1125}{0.805}\right)^{3}$	M1 M1		At least 1 term correct; allow (b)(i) providing it is a (cond prob) ${ }^{3}$ All 3 terms correct
	$=0.2120+0.0184+0.0027=\mathbf{0 . 2 3 3}$	A1	4	AWRT (0.23312)
		Total	13	

MS03 (cont)

Q	Solution	Marks	Total	Comments
4	$95 \% \Rightarrow z=1.96$	B1		CAO (AWRT from calculator)
	$\text { Require } \quad 2 \times \frac{1.96 \sigma}{\sqrt{n}} \leq 0.2 \mu$	M1		Used; may be implied Allow 'no $2 \times$ ' Allow '= sign' throughout
	Thus $2 \times \frac{1.96}{\sqrt{n}} \times \frac{\mu}{2} \leq 0.2 \mu$	M1		Use of $\sigma=\frac{\mu}{2}$; may be implied Allow 'no $2 \times$ '
	Thus $\quad \sqrt{n} \geq \frac{1.96}{2}$	M1		Attempt at solution for \sqrt{n} or n
	Thus $\quad n \geq 96.04$			
	Thus, to nearest 10; $n=\mathbf{1 0 0}$	A1	5	CAO
		Total	5	

MS03 (cont)

MS03 (cont)

MS03 (cont)

General Certificate of Education (A-level) June 2012

Mathematics
MS03

(Specification 6360)

Statistics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$\mathrm{P}(\mathrm{S} \cap \mathrm{U})=0.15 \times 0.10=\mathbf{0 . 0 1 5}$	B1	1	CAO
(ii)	$\begin{aligned} \mathrm{P}(\mathrm{O} \cap \geq 2) & =(0.40 \times 0.50)+(0.45 \times 0.40) \\ & +(0.15 \times 0.70) \end{aligned}$	M1		≥ 1 term correct; may be implied
	$=0.20+0.18+0.105=\mathbf{0 . 4 8 5}$	A1	2	CAO
(iii)	$\begin{aligned} \mathrm{P}(\mathrm{U}) & =(0.40 \times 0.15)+(0.45 \times 0.05) \\ & +(0.15 \times 0.10) \text { or }(\mathrm{i}) \end{aligned}$	M1		≥ 2 terms correct; may be implied
	$=0.06+0.0225+0.015=\mathbf{0 . 0 9 7}$ to $\mathbf{0 . 0 9 8}$	A1	2	AWFW (0.0975)
(iv)	$P(D \mid U)=\frac{P(D \cap U)}{P(U)}=\frac{0.40 \times 0.15}{(i i i)}$	M1		May be implied
	$=\frac{0.06}{0.0975}=\mathbf{0 . 6 1 2} \text { to } \mathbf{0 . 6 1 9}$	A1	2	AWFW (0.61538)
(v)	$\mathrm{P}(\mathrm{~S} \mid \mathrm{O})=\frac{0.15 \times(1-0.10)}{1-(\mathrm{iii})}=\frac{0.135}{0.9025}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Numerator Denominator
	$=0.149$ to 0.15	A1	3	AWFW (0.14958)
(b)	$\mathrm{P}(\mathrm{D} \cap \mathrm{T} \cap \mathrm{S} \mid \mathrm{O})$			
	$=\frac{0.40 \times 0.85}{1-(\mathrm{iii})} \times \frac{0.45 \times 0.95}{1-(\mathrm{iii})} \times(\mathrm{v}) \times 3!$	M1 M1 M1		≥ 2 terms correct in numerator (1-(iii)) in denominator 3 ! or 6 or 3
	$=\frac{0.34 \times 0.4275 \times 0.135 \times 6}{0.9025^{3}}$ or			
	$=0.16$	A1	4	AWRT (0.16016)
	Total		14	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 4 \& \begin{tabular}{l}
\[
\begin{align*}
\& \mathrm{H}_{0}: \lambda=2.6(650) \\
\& \mathrm{H}_{1}: \lambda>2.6(650) \\
\& \mathrm{SL} \quad \alpha=0.05(5 \%) \\
\& \mathrm{CV} \quad \mathrm{z}=\mathbf{1 . 6 4} \text { to } \mathbf{1 . 6 5} \tag{1.6449}\\
\& \hat{\lambda}=\frac{688}{250}=2.75(\mathbf{2}) \\
\& \mathrm{z}=\frac{2.752-2.6}{\sqrt{\frac{2.6}{250}}=\frac{688-650}{\sqrt{650}}=\mathbf{1 . 4 7} \text { to } \mathbf{1 . 4 9}} \\
\& p \text {-value }=\mathbf{0 . 0 6 8} \text { to } \mathbf{0 . 0 7 1}>0.05
\end{align*}
\] \\
No evidence, at 5\% level, to support manager's suspicion
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
(M1) \\
A1F
\end{tabular} \& 6 \& \begin{tabular}{l}
Both; accept \(\mu\) instead of \(\lambda\) \\
AWFW \\
Allow 1.96 iff \(\mathrm{H}_{1}: \lambda \neq 2.6\) \\
AWRT \\
Can be implied by use of 688 \\
Allow use of 2.752 or 688 or 687.5 in denominator \\
AWFW \\
Use of \(\mathrm{P}(X \geq 688 \mid \lambda=650)=0.072\) \\
\(\Rightarrow\) M0 A0 (M1) AF1 \\
F on CV and \(z\)-value
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 5(a) \& \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1F \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 6

4 \& | CAO; or equivalent |
| :--- |
| AWFW |
| (2.3263) |
| F on \hat{p} and z |
| CAO/AWFW |
| May be implied by correct answer |
| AWFW |
| AWRT |
| Allow 'no 2' and FT on CI from (a) |
| Allow $p=0.44$ to 0.65 |
| Attempted solution for \sqrt{n} or n |
| Must be to 'nearest 5' |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

General Certificate of Education (A-level) June 2013

Mathematics
MS03
(Specification 6360)
Statistics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method A
mark is dependent on M or m marks and is for accuracy B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$98 \% \Rightarrow z=\underline{2.32 ~ t o ~} 2.33$	B1		AWFW (2.3263)
	Approximate CI for λ : $\hat{\lambda} \pm z \sqrt{\hat{\lambda}}$	M1		Used
	$392 \pm 2.3263 \times \sqrt{392}$	AF1		F on z
	Per shift $\Rightarrow \quad \div 12$	M1		
	Thus: $\quad \underline{32.7 \pm 3.8 \text { or }(28.8,36.5)}$	A1	5	AWRT
(b)	Per hour (weekday night) \Rightarrow (2.05 to 2.06, 2.6 to 2.61)	BF1		F on (a)
	$\operatorname{Per} \text { hour }(\text { weekend })=\frac{136.8}{48}=\underline{\mathbf{2 . 8 5}}$	B1		
	Thus evidence to agree with claim	BF1	3	F on comparison of value with CI Definitive conclusion $\Rightarrow \mathrm{BF} 0$
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{array}{lr} \hline L=X+Z & \mathrm{E}(L)=68+73 \underline{\mathbf{1 4 1}} \\ \mathrm{~V}(L)=10^{2}+15^{2}=\underline{\mathbf{3 2 5}} \end{array}$	B1 B1	2	CAO
(ii)	$M=X+Y$ $\mathrm{E}(M)=68+25=\underline{\mathbf{9 3}}$	B1		CAO
	$\begin{aligned} \mathrm{V}(M)=10^{2}+5^{2}+2 & \times 10 \times 5 \times(-0.8) \\ & =100+25-80=\underline{\mathbf{5}} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	$\begin{aligned} & \text { Allow 'no 2' } \\ & \text { CAO } \end{aligned}$
(b)(i)	Require: $\mathrm{P}(L<150)=$ $\mathrm{P}\left(\mathrm{Z}<\frac{150-141}{\sqrt{325}}\right)$	M1		Standardising 150 using c's $\mathrm{E}(L) \&$ c's $\mathrm{V}(L)$ from (a)(i)
	$=\mathrm{P}(Z<0.5) \quad=\underline{\mathbf{0 . 6 9} \text { to } 0.692}$	A1	2	(0.49923) AWFW (0.69119)
(ii)	Require: $\mathrm{P}(X+Y>105)=\mathrm{P}(M>105)$			
	$=\mathrm{P}\left(Z>\frac{105-93}{\sqrt{45}}\right)$	M1		Standardising 105 using c's $\mathrm{E}(M)$ \& c's $\mathrm{V}(M)$ from (a)(ii)
	$=\mathrm{P}(\mathrm{Z}>1.79)=1-\mathrm{P}(Z<1.79)$	m1		Correct area change May be implied by a correct answer or by an answer < 0.5
	$=\underline{0.036 ~ t o ~ 0.038 ~}$	A1	3	AWFW (0.03682)
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\lambda=6 \times 2.5=\underline{\mathbf{1 5}}$	B1		CAO
	$\mathrm{P}(W \leq 18)=\underline{\mathbf{0 . 8 1 9} \text { to } \mathbf{0 . 8 2}}$	B1	2	AWFW (0.8195)
(ii)	$\mathrm{P}(W>w) \leq 0.05 \Rightarrow \mathrm{P}(W \leq w) \geq 0.95$	M1		Implied by a value of 21,22 or 23
	$w=\underline{22}$	A1	2	CAO
(b)(i)	$F \sim \underline{\mathbf{N}(\mathbf{3 0}, \mathbf{3 0})}$	B1		May be implied
	$\begin{aligned} & \mathrm{P}(F>35)= \\ & \mathrm{P}\left(Z>\frac{35.5-30}{\sqrt{30}}\right)=\mathrm{P}(Z>1.00) \end{aligned}$	M1 B1		Standardising (34.5, 35 or 35.5) with $\mu=\sigma^{2}$ 35.5 (1.00416)
	$=\underline{0.157 ~ t o ~} 0.16$	A1	4	AWFW (0.15765)
(ii)	$\begin{aligned} & \mathrm{P}(F>f) \leq 5 \% \Rightarrow \\ & \quad \mathrm{P}\left(Z>\frac{(f+0.5)-30}{\sqrt{30}}\right) \leq 0.05 \end{aligned}$	M1		Standardising $(f-0.5, f$ or $f+0.5)$ with $\mu=\sigma^{2}$
	$5 \% \Rightarrow z=\underline{1.64 ~ t o ~} 1.65$	B1		AWFW (1.6449)
	So $f=\underline{39}$	Adep 1	3	CAO Dependent on $(f+0.5)$ and on B1
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & \mathrm{H}_{0}: p=0.50 \\ & \mathrm{H}_{1}: p>0.50 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Here or in (b)(i)
	$\begin{aligned} & \mathrm{P}(X \geq 29 \mid \mathrm{B}(50,0.50)= \\ & \quad \mathbf{1}-\mathbf{(\mathbf { 0 . 8 3 8 9 } \text { or } \mathbf { 0 . 8 9 8 7 })} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Use of $B(50,0.50)$; may be implied
	$=\underline{0.16}$ to 0.165	A1		AWFW (0.16112)
	No evidence to support the claim	AF1	6	F on 10% and (p-value >0.10) Definitive conclusion \Rightarrow AF0
(b)(i)	$10 \% \Rightarrow z=\underline{1.28}$	B1		AWRT (1.2816)
	$z=\frac{\frac{271}{500}-0.5}{\sqrt{\frac{0.5 \times 0.5}{500}}}=\underline{\mathbf{1 . 8 7} \text { to } \mathbf{1 . 8 9}}$	M1 A1		Accept use of \hat{p} in denominator giving $z=1.88511$ AWFW (1.87830)
	Evidence to support the claim	AF1	4	F on CV and z-value Definitive conclusion \Rightarrow AF0
(ii)	$\begin{aligned} \text { Power } & =1-\mathrm{P}(\text { Type II error }) \\ & =1-\mathrm{P}\left(\text { accept } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { false }\right) \\ & \text { or } \mathrm{P}\left(\text { reject } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { false }\right) \\ & \text { or } \mathrm{P}\left(\text { accept } \mathrm{H}_{1} \mid \mathrm{H}_{1} \text { true }\right) \end{aligned}$	B1		Any one stated or used
	$\mathrm{P}(\hat{P}>0.529 \mid \mathrm{B}(500,0.55))=$	M1		Use of $\mathrm{B}(500,0.55)$ M0 for use of 0.529 or 0.5
	$\mathrm{P}\left(Z>\frac{0.529-0.55}{\sqrt{0.55 \times 0.45}}\right)=\mathrm{P}(Z>-$	M1		Accept use of 0.529 in denominator giving $z=0.94075$ but not use of 0.5 Ignore inequality and sign
	$\underline{0.94}$	A1		AWRT (0.94388)
	$=\underline{0.82 ~ t o ~ 0.83 ~}$	A1	5	AWFW (0.82738)
	Total		15	
	TOTAL		75	

A-LEVEL

Mathematics

Statistics 3 - MS03
Mark scheme

6360
June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	$96 \% \Rightarrow z$ $=\underline{\mathbf{2 . 0 5} \text { to } \mathbf{2 . 0 6}}$ \hat{p} $=\frac{23}{200}=\underline{\mathbf{0 . 1 1 5}}$ Approximate CI for $p: \quad$ $\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 0.115 ± 2.0537 $\sqrt{\frac{0.115 \times 0.885}{200}}$ or $\underline{\mathbf{0 . 1 1 5} \pm \mathbf{0 . 0 4 6}}$ $\underline{\mathbf{(0 . 0 6 9 , \mathbf { 0 . 1 6 1 })}}$	B1 B1 M1 AF1 A1	5	AWFW (2.0537) CAO; or equivalent Used F on \hat{p} and z CAO/AWRT AWRT
(b)	$2 \text { in } 50=\frac{2}{50}=\underline{\mathbf{0 . 0 4}<\mathbf{L C L} \text { or } \mathbf{C I}}$ Thus evidence to reject supplier's claim	BF1 Bdep1	2	F on LCL or CI Dependent on BF1 Accept fairly definitive conclusion
		Total	7	

Q	Solution	Marks	Total	Comments
	$\begin{aligned} & \mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{G}} \\ & \mathrm{H}_{1}: \mu_{\mathrm{B}} \neq \mu_{\mathrm{G}} \\ & \text { SL } \quad \alpha=0.05(5 \%) \\ & \mathrm{CV} \quad \mathrm{z}=(\pm) \underline{\mathbf{1 . 9 6}} \\ & \mathrm{z}=\frac{\|\bar{b}-\bar{g}\|}{\sqrt{\frac{\sigma_{B}^{2}}{n_{B}}+\frac{\sigma_{G}^{2}}{n_{G}}}}=\frac{\|21.35-21.90\|}{\sqrt{\frac{0.5625}{20}+\frac{0.9025}{15}}} \\ & =(\pm) \underline{\mathbf{1 . 8 5}} \end{aligned}$ Evidence, at 5\% level, that $\boldsymbol{\mu}_{\mathrm{B}}=\boldsymbol{\mu}_{\mathrm{G}}$ or No evidence, at 5\% level, that $\boldsymbol{\mu}_{\mathrm{B}} \neq \boldsymbol{\mu}_{\mathrm{G}}$	B1 B1 M1 M1 A1 AF1	6	At least H_{1}; allow suffices of $1 \& 2$ or $X \& Y$, etc AWRT (1.9600) Numerator Denominator Dependent on at least M1 M0 AWRT (1.8510) Ignore sign $(p \text {-value }=0.0642)$ F on CV \& z-value; consistent signs Definitive conclusion \Rightarrow AF0 F on 5\% \& p-value; consistent areas
		Total	6	

Q	Solution	Marks	Total	Comments
3 (a)		B1 B1 B1	\%	Shape; 3×3 branches Labels; C, V, L and $\geq 1 \mathrm{~F}, \mathrm{M}, \mathrm{A}$ Percentages or equivalent for C, V, L and $\geq 1 \mathrm{~F}, \mathrm{M}$, A
$\begin{aligned} & \hline \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{P}((\mathrm{C} \cup \mathrm{~L}) \cap \mathrm{M})=\mathrm{P}(\mathrm{C} \cap \mathrm{M})+\mathrm{P}(\mathrm{~L} \cap \mathrm{M}) \\ &=(0.65 \times 0.55)+(0.15 \times 0.65) \\ &=0.3575+0.0975=\mathbf{0 . 4 5 5} \text { or } \mathbf{9 1 / 2 0 0} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	(2)	CAO
(ii)	$\begin{aligned} & \mathrm{P}(\mathrm{~L} \mid \mathrm{A})=\mathrm{P}(\mathrm{~L} \cap \mathrm{~A}) \div \mathrm{P}(\mathrm{~A}) \\ & =\frac{0.15 \times 0.25}{(0.65 \times 0.15)+(0.20 \times 0.20)+(0.15 \times 0.25)} \\ & =\frac{0.0375}{0.0975+0.04+0.0375}=\frac{0.0375}{0.1750}=\underline{\mathbf{0 . 2 1 4}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	(3)	Numerator Denominator AWRT (0.21429) CAO $(3 / 14)$
(iii)	$\begin{aligned} & \mathrm{P}\left(\mathrm{~F}^{\prime} \mid \mathrm{C}^{\prime}\right)=\mathrm{P}\left(\mathrm{~F}^{\prime} \cap \mathrm{C}^{\prime}\right) \div \mathrm{P}\left(\mathrm{C}^{\prime}\right) \\ & =\frac{0.2 \times(0.45+0.20)+0.15(0.65+0.25)}{0.35} \\ & \quad=\frac{0.13+0.135}{0.35}=\frac{0.265}{0.35}=\underline{\mathbf{0 . 7 5 7}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	(3)	Numerator Denominator AWRT (0.75714) CAO $(53 / 70)$
			8	
(c)	$\begin{aligned} & \text { Prob }=\mathrm{P}(\mathrm{C} \mid \mathrm{F}) \times \mathrm{P}(\mathrm{~V} \mid \mathrm{F}) \times \mathrm{P}(\mathrm{~L} \mid \mathrm{F}) \times 3!= \\ & \frac{(0.65 \times 0.30) \times(0.20 \times 0.35) \times(0.15 \times 0.10)}{[(0.65 \times 0.30)+(0.20 \times 0.35)+(0.15 \times 0.10)]^{3}} \times 6 \\ & =\frac{(0.195 \times 0.07 \times 0.015) \text { or }(0.00020475)}{0.28^{3}} \times 6 \\ & =\underline{\mathbf{0 . 0 5 6}} \end{aligned}$	M1 M1 M1 A1	4	Numerator Denominator$\times 3 \text { ! or } 6$AWRT (0.05596) CAO $(351 / 6272)$
		Total	15	

Q	Solution	Marks	Total	Comments
4 (a)	$\begin{array}{r} 98 \% \Rightarrow z=\frac{2.32 \text { to } 2.33}{\text { CI for } \mu_{\mathrm{E}}-\mu_{\mathrm{G}}: \quad(\bar{e}-\bar{g}) \pm z \sqrt{\frac{s_{\mathrm{E}}^{2}}{n_{\mathrm{E}}}+\frac{s_{\mathrm{G}}^{2}}{n_{\mathrm{G}}}}} \\ (42.6-39.7) \pm 2.3263 \sqrt{\frac{6.2^{2}}{50}+\frac{5.3^{2}}{50}} \\ \underline{2.9 \pm 2.7 \text { or }(\mathbf{0 . 2}, \mathbf{5 . 6})} \end{array}$	B1 M1 m1 AF1 A1	5	AWFW (2.3263) General form used Correct form used for SD Accept pooling F on z Pooling gives $2.3263 \sqrt{1.3306}$ AWRT
(b) (i)	Random	B1	1	CAO
(ii)	Large samples (both >25 or 30) so can apply Central Limit Theorem	B1 Bdep1	2	Dependent on B1
		Total	8	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 5 \\ (\mathbf{a})(\mathbf{i}) \end{gathered}$	Distribution of X is symmetrical around 4 $\begin{aligned} & \mathrm{E}\left(X^{2}\right)=0.2^{2} \times 0.05+\ldots . .+6^{2} \times 0.05 \\ & =0.20+2.25+6.40+6.25+1.80=\underline{\mathbf{1 6 . 9}} \\ & \quad \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-4^{2}=16.9-16=\underline{\mathbf{0 . 9}} \end{aligned}$	B1 M1 A1 B1	4	Accept calculation Must show method for $\mathrm{E}\left(X^{2}\right)$ CAO AG; must show method for $\operatorname{Var}(X)$
(ii)	$\begin{aligned} \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=14.4-4 \times 3.7 & =\underline{\mathbf{0 . 4}} \\ \rho_{X Y}=\frac{-0.4}{\sqrt{0.9 \times 0.61}} & =\underline{\mathbf{- 0 . 5 4}} \end{aligned}$	M1 A1 M1 AF1	4	Expression AWRT F on $\operatorname{Cov}(X, Y)$
(b)	$\begin{aligned} & \mathrm{E}(T)=\underline{\mathbf{7 . 7}} \mathrm{E}(D)=\underline{\mathbf{0 . 3}} \\ & \operatorname{Var}(T)=0.9+0.61+2 \times(-0.4) \\ &=\underline{\mathbf{0 . 7 1}} \\ & \operatorname{Var}(D)=0.9+0.61-2 \times(-0.4)=\underline{\mathbf{2 . 3 1}} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	CAO; both Use of either $\operatorname{Var}(X \pm Y)=$ $\operatorname{Var}(X)+\operatorname{Var}(Y) \pm 2 \operatorname{Cov}(X, Y)$ CAO CAO
		Total	12	

Q	Solution	Marks	Total	Comments
$\begin{gathered} \hline 6 \\ \text { (a) } \end{gathered}$	$\begin{aligned} \operatorname{Var}\left(\bar{X}_{A}-\bar{X}_{B}\right)=\frac{18.8}{n}+\frac{18.8}{n} & \\ & =\underline{\mathbf{3 7 . 6} / \boldsymbol{n}} \end{aligned}$	M1 A1	2	Award for $\frac{18.8}{n}$ or $\frac{(2) \sigma^{2}}{n}$ OE
(b)	$\begin{equation*} 99 \% \Rightarrow z=\underline{2.57} \text { to } 2.58 \tag{2.5758} \end{equation*}$ Require: $2 \times z \times \sqrt{\frac{37.6}{n}} \leq 5$ $\begin{aligned} & 2 \times 2.5758 \times \sqrt{\frac{37.6}{n}} \leq 5 \\ & n \geq \frac{4 \times 2.5758^{2} \times 37.6}{25} \end{aligned}$ $n=\underline{40}$	B1 M1 A1 m1 A1	5	AWFW Award if "no 2", incorrect z-value, $\sqrt{\frac{18.8}{n}}$ or $\sqrt{\frac{(2) \sigma^{2}}{n}}$ or $\sqrt{\frac{c}{n}}$ from (a) Fully correct expression Attempt at solving equation involving \sqrt{n} for n or \sqrt{n} CAO
Note	Accept equalities or strict inequalities throughout			
		Total	7	

Q	Solution	Marks	Total	Comments
$\begin{aligned} & 7(a) \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{E}(X)=\sum_{x=0}^{\infty} x \times \frac{X \mathrm{Po}(\lambda)}{\mathrm{e}^{-\lambda} \lambda^{x}} \\ & x! \\ &=\lambda \mathrm{e}^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \\ &=\lambda e^{-\lambda} \sum_{y=0}^{\infty} \frac{\lambda^{y}}{y!}=\lambda \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda}=\underline{\lambda} \quad(y=x-1) \end{aligned}$	M1 M1 A1	3	Used; ignore limits until A1 Accept a list of ≥ 3 terms summed Factor of (at least) λ Division of x ! by x AG; fully correct convincing solution with valid reason for ($=\lambda$)
(ii)	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\lambda^{2}=\left(\lambda^{2}+\lambda\right)-\lambda^{2}=\underline{\lambda}$	B1	1	AG; fully correct convincing solution
(b)(i)	$\begin{gathered} \begin{aligned} \mathrm{H}_{0}: \lambda=10 \\ \mathrm{H}_{1}: \lambda>10 \end{aligned} \\ \mathrm{P}(\mathrm{X} \geq 15 \mid \lambda=10)=\mathbf{1}-\mathbf{(\mathbf { 0 . 9 1 6 5 } \text { or } \mathbf { 0 . 9 5 1 3 })} \\ =\underline{\mathbf{0 . 0 8 3} \text { to } \mathbf{0 . 0 8 4}} \\ \text { Calculated } p \text {-value }>0.05(5 \%) \end{gathered}$ No evidence, at 5\% level, that $\lambda>\mathbf{1 0}$	B1 M1 A1 m1 AF1	5	Both; here or in (b)(ii)(A) and only mark available here if not exact test AWFW (0.0835) Comparison with 0.05 OE; F on p-value Definitive conclusion \Rightarrow AF0
(ii)(A)	$\begin{aligned} & 5 \% \Rightarrow C V \text { for } z=\underline{\mathbf{1 . 6 4} \text { to } 1.65} \\ & z=\frac{241(-0.5)-200}{\sqrt{200 \text { or } 241}}=\underline{\mathbf{2 . 8 6} \text { to } \mathbf{2 . 9}} \end{aligned}$ Evidence, at 5\% level, that $\lambda>\mathbf{1 0}$	B1 M1 A1 AF1	4	AWFW; seen anywhere (1.6449) OE; allow (+0.5) AWFW OE; F on z-value \& CV Definitive conclusion \Rightarrow AF0
(B)	$\begin{aligned} & \frac{\mathrm{CV}(-0.5)-200}{\sqrt{200 \text { or } 241}}=1.6449 \\ & \mathrm{CV} \text { for } X=\underline{\mathbf{2 2 3} \text { to } \mathbf{2 2 4}} \end{aligned}$	M1 AF1 A1	3	OE; allow (+0.5) but must be for total number of faults F on $\{(\mathrm{CV}$ for z$) \&(z$-statistic $)\}$ in (A) AWFW
(C)	$\begin{aligned} & \mathrm{P}(\text { Type II error })=\mathrm{P}\left(\text { accept } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { false }\right) \\ & \mathrm{P}(X<\mathrm{CV} \mid \lambda=12)= \\ & \qquad \mathrm{P}\left(\mathrm{Z}<\frac{(222 \text { to } 224)-240}{\sqrt{240 \text { or } 200}}\right)= \\ & \mathrm{P}(\mathrm{Z}<-1.1 \text { to }-1.03)=1-\mathrm{P}(Z<1.03 \text { to } 1.1) \\ & \quad=1-(0.848 \text { to } 0.865)=\underline{\mathbf{0 . 1 3} \text { to } \mathbf{0 . 1 6}} \end{aligned}$	B1 M1 m1 A1	4	OE; stated or used OE; FT on CV from (B) Area change AWFW
		Total	20	

AQA

A-LEVEL Mathematics

Statistics 3 - MS03
Mark scheme

6360
June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
$s f$	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS03

GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
GN2 In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks

GN3 When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks

GN4 Where percentage equivalent answers are permitted in a question, then penalise by one accuracy mark at the first correct answer but only if no indication of percentage is shown

GN5 In questions involving probabilities, do not award accuracy marks for answers given in the form of a ratio or odds

GN6 Accept decimal answers, providing that they have at least two leading zeros, in the form $c \times 10^{-n}$

Q	Solution	Marks	Total	Comments
1(a)	$r=\frac{3095}{\sqrt{7410 \times 1642}}=\underline{\mathbf{0 . 8 8 7}}$ or $\begin{aligned} & r=\underline{\mathbf{0 . 8 8 7}} \\ & r=\underline{\mathbf{0 . 8 8} \text { to } \mathbf{0 . 8 9}} \end{aligned}$	M1 A1 (B2) (B1)	2	Numerical expression AWRT (0.88729) AWRT AWFW
Note	$\left.1 \begin{array}{lllllll} \\ 1\end{array} \sum x=3036\right) ~ \sum x^{2}=775518 \quad \sum x y=561719 \quad \sum y=2208 \quad \sum y^{2}=407914 \quad \bar{x}=253 \quad \bar{y}=184$			
(b)	\[\)$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \quad \rho>0$\]SL $\alpha=0.01(1 \%)$CV $r=\underline{(+) \mathbf{0 . 6 5 8} \text { to }}(+) \mathbf{0 . 6 5 8 1}$Calculated $r>$ Tabulated rEvidence, at 1% level, of a positive correlation between the right foot length and right hand length of males aged between 19 years and 25 years	B1 B1 M1 AF1	4	Both; do not accept in terms or r but accept in words providing clear indication of population pmcc AWFW (0.6581) Comparison; can be implied by conclusion F on r and CV OE in context
Note	1 For $\mathrm{H}_{1}: \rho \neq 0$ then $\mathrm{CV} r=(\pm) 0.7079$ so same conclusion $\Rightarrow \mathrm{B} 0 \mathrm{~B} 0 \mathrm{M} 1 \mathrm{AF} 1$			
		Total	6	

Q	Solution	Marks	Total	Comments
2(a)	$99 \% \Rightarrow z=\underline{\mathbf{2} .57}$ to $\mathbf{2 . 5 8}$	B1		AWFW (2.5758)
	CI for 26 weeks is:			
		M1		$\begin{array}{r} (507-416) \pm z \sqrt{a} \\ \sqrt{a} \end{array}$
	$(507-416) \pm 2.5758 \sqrt{507+416}$	m1		$z \sqrt{507+416}$
		A1		Correct expression; $2.32 \leq z \leq 2.58$
	$\begin{aligned} & \text { ie } \\ & 91 \pm(78 \text { to } 78.5) \text { or }(12.5 \text { to } 13,169 \text { to } 169.5) \end{aligned}$			
	Dividing by 26 gives: $3.5 \pm 3.0 \text { or }(0.5,6.5)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		CAO/AWRT or AWRT
	OR			
	$99 \% \Rightarrow z=\underline{\mathbf{2} .57} \text { to } \mathbf{2 . 5 8}$	(B1)		AWFW (2.5758)
	CI for 1 week is:	(B1)		19.5 \& 16
	$\left(\frac{507}{26}-\frac{416}{26}\right) \pm 2.5758 \sqrt{\frac{507}{26^{2}}+\frac{416}{26^{2}}}=$	(M1)		$(19.5-16.0) \pm z \sqrt{b}$
	$(19.5-16.0) \pm 2.5758 \sqrt{\frac{19.5}{26}+\frac{16.0}{26}}$	(m1)		$z \sqrt{\frac{35.5}{26}} \text { or } z \sqrt{35.5}$
		(A1)		Correct expression; $2.32 \leq z \leq 2.58$
	ie $\quad 3.5 \pm 3.0$ or $(0.5,6.5)$	(A1)	6	CAO/AWRT or AWRT
(b)				
	Since CI is above 0	B1		OE; providing $\mathrm{CI}>0$
	Emilia's belief is justified	Bdep1		Dependent on B1; OE in context
			2	
		Total	8	

Q	Solution	Marks	Total	Comments
3	$\text { S: } 0.55 \text { L: } 30 \quad \text { VL: } 0.15$			In (a)(i) \& (iv), accept any equivalent fractional answer with den ≤ 100 or the equivalent percentage answer with $\%$ - sign (see GN4)
(i)	$\mathrm{P}(\mathrm{S} \cap £ 1)=0.55 \times 0.20=\underline{\mathbf{0 . 1 1}}$	B1	(1)	CAO
(ii)	$\begin{aligned} & \mathrm{P}(\mathfrak{£} 0)= \\ & (0.55 \times 0.70)+(0.30 \times 0.65)+(0.15 \times 0.55) \\ & =0.385+0.195+0.0825=\underline{\mathbf{0 . 6 6 2} \text { to } \mathbf{0 . 6 6 3}} \end{aligned}$	M1 A1	(2)	>1 term correct; may be implied AWFW (0.6625)
(iii)	$\begin{aligned} & P(L \mid £ 0)=\frac{P(L \cap £ 0)}{P(£ 0)}=\frac{0.30 \times 0.65}{(\mathrm{ii})} \\ & \quad=\frac{0.195}{0.6625}=\underline{\mathbf{0 . 2 9 4} \text { to } \mathbf{0 . 2 9 5}} \end{aligned}$	M1 A1	(2)	May be implied AWFW (0.29434)
(iv)	$\begin{aligned} \mathrm{P}(\mathrm{VL} \mid>£ 0)=\frac{\mathrm{P}(\mathrm{VL} \cap>£ 0)}{\mathrm{P}(>£ 0)} & =\frac{0.15 \times 0.45}{1-(\mathrm{ii})} \\ & =\frac{0.0675}{0.3375}=\underline{\mathbf{0 . 2}} \end{aligned}$	M1 M1 A1	(3)	Numerator Denominator CAO
			8	
(b)	$\begin{aligned} & \mathrm{P}((\mathrm{~S} \cap \mathrm{~L} \cap \mathrm{VL}) \mid>£ 0)= \\ & \frac{0.55 \times 0.30}{0.3375} \times \frac{0.30 \times 0.35}{0.3375} \times \frac{0.15 \times 0.45}{0.3375} \times 6= \\ & \frac{0.165 \times 0.105 \times 0.0675 \times 6}{0.3375^{3}}=\frac{0.0011694375 \times 6}{0.3375^{3}} \end{aligned}$ or $\begin{aligned} =\frac{22}{45} \times \frac{14}{45} \times \frac{9}{45} \times 6= & \frac{16632}{91125}=\frac{616}{3375} \\ & =\underline{\mathbf{0 . 1 8 2} \text { to } \mathbf{0 . 1 8 3}} \end{aligned}$	M1 M1 m1 A1	4	>1 term correct in numerator (1-(ii)) in denominator 6 or $3!$; must have at least one M1
		Total	12	

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & \mathrm{H}_{0}: p=0.60(60 \%) \\ & \mathrm{H}_{1}: p \neq 0.60(60 \%) \\ & 5 \% \Rightarrow z=\underline{\mathbf{1 . 9 6}} \\ & z=\frac{\hat{p}=\frac{164}{250}=\underline{\mathbf{0 . 6 5 6}}}{\sqrt{\frac{0.656-0.6}{250}}} \\ & \\ & =\underline{\mathbf{1 . 8} \text { to } \mathbf{1 . 8 1}} \end{aligned}$ No evidence, at 5% level, to suggest percentage is not $\mathbf{6 0 \%}$ or is different	B1 B1 B1 M1 m1 A1 AF1	7	Both AWRT CAO Allow use of 0.656 in denominator Correct denominator AWFW (1.80739) $(p \text {-value }=0.07070>0.05)$ F on z and CV OE in context
Notes				
(b)	$\begin{aligned} & \mathrm{H}_{0}: \quad p=0.25(25 \%) \\ & \mathrm{H}_{1}: \quad p<0.25(25 \%) \end{aligned}$ Use of $\mathrm{B}(40,0.25)$ $\mathrm{P}(X \leq 5)=\underline{\mathbf{0 . 0 4 3}}$ Calculated p-value <0.05 (5\%) Evidence, at 5\% level, to suggest percentage is less than $\mathbf{2 5 \%}$	B1 M1 A1 M1 AF1	 5	Both May be implied AWRT (0.0433) Comparison of p-value and 0.05 F on p-value and 0.05 OE in context
Notes	$1 \mathrm{P}(X \leq 4)=0.0160 \text { and } \mathrm{P}(X \leq 6)=0.0962$ 2 Use of normal approximation $\Rightarrow \mathrm{B} 1$ max			
(c)	$98 \% \Rightarrow z=\underline{2.32} \text { to } 2.33$ $z \sqrt{\frac{p(1-p)}{n}}=2.3263 \sqrt{\frac{0.3 \times 0.7}{n}}<0.05$ $n>\frac{2.3263^{2} \times 0.21}{0.05^{2}}=\underline{\mathbf{4 5 0} \text { to } \mathbf{4 6 0}}$	B1 M1 A1 m1 A1	5	AWFW (2.3263) Use of $z \times \operatorname{SD}(\hat{p})$ Allow use of $p=0.5,(\times 2) \&$ $z=2.05$ to 2.33 Attempt at solution for n AWFW; must be an integer
Note	1 Use of $p=0.5$ gives $n=541.2$ so 535 to 545 (AWRT) \Rightarrow B1 M1 AF1 M1 A0			
		Total	17	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 5 \\ (\mathbf{a})(\mathbf{i}) \end{gathered}$	$\begin{aligned} & \mathrm{E}(X)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}= \\ & n p \sum_{x=1}^{n-1} \frac{(n-1)!}{(x-1)!(n-x)!} x^{x-1}(1-p)^{n-x}= \\ & n p \sum_{x=1}^{n-1} \mathrm{~B}(n-1, p)=n p \end{aligned}$	M1 M1 A1	3	Used; ignore limits until A1 $\geq \mathbf{2}$ of: factor of $n p$ plus p^{x} to p^{x-1}, n ! to ($n-1$)! and x ! to $(x-1)$! Fully complete and correct derivation AG
(ii)	$\begin{aligned} & \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-n^{2} p^{2} \\ & \mathrm{E}(X(X-1))=\mathrm{E}\left(X^{2}\right)-n p=n(n-1) p^{2} \\ & \text { so } \\ & \quad \operatorname{Var}(X)=n(n-1) p^{2}+n p-n^{2} p^{2}=\underline{\mathbf{n p}(\mathbf{1}-\boldsymbol{p})} \end{aligned}$	M1 A1	2	Both used; OE Fully complete and correct derivation
Notes	$\begin{aligned} & 1 \mathrm{E}(X(X-1))=\mathrm{E}\left(X^{2}\right)-n p=\mathrm{V}(X)+n^{2} p^{2}-n p=n(n-1) p^{2} \Rightarrow \mathrm{~V}(X)=n p(1-p) \Rightarrow \mathrm{M} 1 \mathrm{~A} 1 \\ & 2 \mathrm{E}\left(X^{2}\right)=n^{2} p^{2}-n p^{2}+n p \Rightarrow \mathrm{~V}(X)=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2}=n p(1-p) \Rightarrow \mathrm{M} 1 \mathrm{~A} 1 \\ & \hline \end{aligned}$			
(b)(i)	$\begin{aligned} & \frac{\operatorname{Var}(Y)}{\mathrm{E}(Y)}=\frac{n p(1-p)}{n p}=1-p=\frac{2.985}{3}=0.995 \\ & \text { so } \\ & \quad p=\underline{\mathbf{0 . 0 0 5}} \text { and so } n=\frac{3}{0.005}=\underline{\mathbf{6 0 0}} \end{aligned}$	M1 A1 A1	3	OE CAO both
(ii)	$\frac{\operatorname{Var}(U)}{\mathrm{E}(U)}=\frac{n p(1-p)}{n p}=1-p=\frac{6.25}{5}=1.25$ $\Rightarrow \boldsymbol{p}<\mathbf{0}$ or $(\mathbf{1}-\boldsymbol{p})>\mathbf{1}$ which is impossible	M1 A1	2	OE Indication that $p<0$ or $(1-p)>1$
(c)	$\begin{array}{r} \mathrm{E}(W)=2 \times 5+10=\underline{\mathbf{2 0}} \\ \operatorname{Var}(W)=2^{2} \times 5=\underline{\mathbf{2 0}} \end{array}$ No odd values or no values <10	B1 B1 B1	3	CAO; must be justified CAO; must be justified Either
(d)	$\begin{aligned} n=5000 & \& p=0.002 \Rightarrow \underline{\mathbf{P o}(\mathbf{1 0})} \\ \mathrm{P}(6 \leq A B-\leq 12) & =\mathbf{0 . 7 9 1 6} \\ & -\left(\begin{array}{l} \mathbf{0 . 0 6 7 1} \text { or } \mathbf{0 . 1 3 0 1}) \\ \\ \end{array} \underline{\underline{\mathbf{0 . 7 2 4} \text { to } \mathbf{0 . 7 2 5}}}\right. \end{aligned}$	B1 M1 A1	3	AWFW (0.7245)
Note	1 Use of normal approximation \Rightarrow B0 M0 A0 ${ }^{\text {a }}$			
		Total	16	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 6 \\ \text { (a) } \end{gathered}$	$\begin{aligned} & \text { Var }(\bar{L}-2 \bar{S})=\operatorname{Var}(\bar{L})+2^{2} \operatorname{Var}(\bar{S}) \\ & \text { but } \\ & \text { so } \\ & \text { sor }(S)=\operatorname{Var}(L)=\sigma^{2} \\ & \text { giving } \\ & \operatorname{Var}(\bar{S})=\operatorname{Var}(\bar{L})=\frac{\sigma^{2}}{n} \\ & \operatorname{Var}(\bar{L}-2 \bar{S})=\underline{\mathbf{5} \boldsymbol{\sigma}^{2} / \boldsymbol{n}} \end{aligned}$	M1 M1 A1	3	Use of + and 2^{2} Use of $\frac{\sigma^{2}}{n}$ CAO
Note	1 Answer of $3 \sigma^{2} / n \Rightarrow$ M0 M1 A0			
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{H}_{0}: \mu_{L}=2 \mu_{S} \\ & \mathrm{H}_{1}: \mu_{L}>2 \mu_{S} \\ & 10 \% \Rightarrow z=\underline{\mathbf{1 . 2 8}} \\ & z=\frac{522-(2 \times 258)}{\sqrt{\frac{5 \times 8^{2}}{25}} \sqrt{ }} \end{aligned}$ $=\underline{1.68}$ Evidence, at 10% level, to suggest that $\mu_{L}>2 \mu_{S}$	B1 B1 B1 M1 M1 A1 Adep1	7	Award B1 B0 for $\mu_{L}=\mu_{S}$ AWRT (1.2816) Numerator; allow (522-258) Denominator; allow $\sqrt{2 \times 8^{2} / 25}$ OE or $\sqrt{3 \times 8^{2} / 25}$ OE AWRT (1.67705) Dep on A1 OE in context
(ii)	CV is given by $\frac{\bar{l}-2 \bar{s}}{\sqrt{\frac{5 \times 8^{2}}{25}}} \text { or } \frac{\bar{l}-2 \bar{s}}{\sqrt{12.8}}=1.28(16)$ ie $C V=\underline{4.585}$	M1 A1	2	Completely correct equality AWRT; AG (4.58519)
(iii)	$\begin{aligned} & \mathrm{P}(\text { Type II error })=\mathrm{P}\left(\text { accept } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { false }\right) \\ & =\mathrm{P}\left(\bar{L}-2 \bar{S}<4.585 \mid \mu_{L}-2 \mu_{S}=10\right)= \\ & \mathrm{P}\left(Z<\frac{4.585-10}{\sqrt{\frac{5 \times 8^{2}}{25}}}\right)=\mathrm{P}(\mathrm{Z}< \pm \mathbf{1 . 5 1}) \\ & =\underline{\mathbf{0 . 0 6 4} \text { to } \mathbf{0 . 0 6 6}} \end{aligned}$	B1 M1 A1 A1	4	OE; stated or used Must have correct numerator Denominator; allow $\sqrt{2 \times 8^{2} / 25}$ OE or $\sqrt{3 \times 8^{2} / 25}$ OE AWRT (-1.51354) AWFW (0.06504)
		Total	16	

A-level Mathematics
MSO3 - Statistics 3
Mark scheme

6360
June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS03

GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
GN2 In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks

GN3 In general, a correct answer (to accuracy required) without units scores full marks
GN4 When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks

GN5 Where percentage equivalent answers are permitted in a question, then penalise by one accuracy mark at the first correct answer but only if no indication of percentage (eg \%) is shown

GN6 In questions involving probabilities, do not award accuracy marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34

GN7 Accept decimal answers, providing that they have at least two leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3})

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	and $\begin{aligned} \hat{p}_{\mathrm{M}} & =\frac{264}{480}=\frac{11}{20} \text { or } \underline{\mathbf{0 . 5 5}} \\ \hat{p}_{\mathrm{W}} & =\frac{220}{500}=\frac{11}{25} \text { or } \underline{\mathbf{0 . 4 4}} \\ 95 \% \Rightarrow z & =\underline{\mathbf{1 . 9 6}} \end{aligned}$ CI for $p_{\mathrm{M}}-p_{\mathrm{w}}$ is $\begin{align*} & (0.55-0.44) \pm 1.96 \sqrt{\frac{0.55 \times 0.45}{480}+\frac{0.44 \times 0.56}{500}} \\ & \begin{array}{l} \text { ie } \\ \text { or } \\ \\ \underline{\mathbf{0 . 1 1} \pm \mathbf{0 . 0 6}} \\ \end{array} \end{align*}$	B1 B1 M1 M1 AF1 A1	6	Both CAO $\left(\hat{p}_{\mathrm{p}}=0.49388\right)$ AWRT (1.95996) $\left(\hat{p}_{\mathrm{M}}-\hat{p}_{\mathrm{W}}\right) \pm(1.96 \text { or } 1.64 \text { to } 1.65) \sqrt{a}$ Expression for \sqrt{a} F on \hat{p}_{M} and \hat{p}_{w} and z CAO/AWRT AWRT
Note	1 A pooled estimate of variance $(0.11 \pm 0.06062) \Rightarrow$ B1 B1 M1 M0 AF0 A1 (a maximum of 4 marks)			
(b)	$\mathrm{CI}>0.025 \text { or } \mathrm{LCL}>0.025$ Evidence to support the claim	$\mathrm{BF} 1$ Bdep1	2	F on CI providing $\mathrm{CI}>0.025$ Dep on BF1
Notes	1 There must be a reference to 0.025 (OE) and a clear comparison with the answer to (a) 2 Accept answers suggesting that selections may not be random and/or independent or that based on 480 \& 500 may not be representative or changes of opinions between opinion poll and referendum			
		Total	8	

Q	Solution	Marks	Total	Comments
2 (a)			3	Shape; $2 \times 2 \times 3=12$ branches Labels; OT \& L and E \& OT \& L Attempt at percentages or probabilities for D and M and T
(b)(i)	$\mathrm{P}\left(\mathrm{T}_{\text {от }}\right)=0.351+0.063+0.009+0.017=\underline{\mathbf{0 . 4 4}}$	B1	(1)	CAO
(ii)	$\begin{aligned} \mathrm{P}\left(\mathrm{~T}_{\text {от }} \mid \mathrm{D}_{\text {от }}\right)=\frac{0.351+0.063}{0.9}=\frac{0.414}{0.9} & \\ & =\underline{\mathbf{0 . 4 6}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	(2)	Correct numerator; PI CAO
(iii)	$\begin{aligned} & \mathrm{P}\left(\mathrm{~T}_{\text {E or OT }} \mid \mathrm{D}_{\text {OT }}\right)=0.46+\frac{0.14625+0.0315}{0.9}= \\ & 0.46+\frac{0.17775}{0.9}=0.46+\underline{\mathbf{0 . 1 9 7} \text { to } \mathbf{0 . 2 0}} \\ & =\underline{\mathbf{0 . 6 5 7} \text { to } \mathbf{0 . 6 6}} \end{aligned}$	M1 A1 A1	(3)	(ii) $+p$ AWFW; PI (0.1975) AWFW (0.6575)
(iv)	$\begin{aligned} & \mathrm{P}\left(\mathrm{~T}_{\text {E o ot }} \mid \mathrm{M}_{\mathrm{OT}}\right)= \\ & \frac{0.14625+0.351+0.00375+0.009}{0.9 \times 0.65+0.1 \times 0.15}=\frac{0.51}{0.6} \\ & \quad \underline{\underline{\mathbf{0 . 8 5}}} \end{aligned}$	M1 A1	(2)	Correct numerator; PI CAO
SCs	$10.25+0.60=0.85 \Rightarrow$ B2 $\quad 21-0.15=0.85 \Rightarrow$ B2			
			8	
(c)	$\begin{aligned} & \mathrm{P}\left(\mathrm{~T}_{\text {От }} \mid \mathrm{D}_{\text {OT }}\right)=0.46 \\ & \mathrm{P}\left(\mathrm{~T}_{\mathrm{E}} \mid \mathrm{D}_{\text {От }}\right)=0.6575-0.46=\underline{\mathbf{0 . 1 9 7} \text { to } \mathbf{0 . 2 0}} \\ & \mathrm{P}\left(\mathrm{~T}_{\text {OT }} \cap \mathrm{T}_{\text {OT }} \cap \mathrm{T}_{\mathrm{E}}\right)=0.46^{2} \times 0.1975 \\ & \times 3 \\ & \quad \begin{array}{r} \mathbf{0 . 1 2 5} \text { to } \mathbf{0 . 1 2 6} \end{array} \end{aligned}$	B1 M1 m1 A1	4	AWFW; PI (0.1975) $\begin{aligned} & p_{1}^{2} \times p_{2} \\ & \text { CAO } \end{aligned}$ AWFW (0.12537)
		Total	15	

Q	Solution	Marks	Total	Comments
$\begin{gathered} \hline \text { 4(a) } \\ \text { (i) } \end{gathered}$	$R:$ mean $=\underline{\mathbf{3 5}} \quad$ variance $=\underline{\mathbf{1 2 5}}$	B1	(1)	Both CAO
(ii)	$\begin{array}{\|lrl} \text { F: } & \text { mean } & =\underline{\mathbf{1 1 5}} \\ \text { variance }=15^{2}+20^{2}+(2 \times 15 \times 20 & \times 0.25) \\ & =\underline{775} \end{array}$	B1 M1 A1	(3)	CAO Attempt at $a^{2}+b^{2} \pm(2) \times a \times b \times 0.25$ CAO
(iii)	$T: \quad \begin{aligned} \text { mean } & =\underline{\mathbf{1 5 0}} \\ \text { variance } & =\underline{\underline{900}}\end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	(2)	$\begin{aligned} & \text { CAO } \\ & \text { CAO } \end{aligned}$
(iv)	$\begin{array}{\|lr} \text { D: } \quad \text { mean }=\underline{\mathbf{3 5}} \\ \text { or } \begin{aligned} \text { variance } & =20^{2}+15^{2}-(2 \times 20 \times 15 \times 0.25) \\ & =(\text { (ii) }-4 \times 15 \times 20 \times 0.25 \end{aligned} \\ & =\underline{\mathbf{4 7 5}} \end{array}$	B1 (M1) B1	(2)	CAO Only if M1 not scored in (ii) CAO
			8	
$\begin{aligned} & \hline \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{P}(T<180)=\mathrm{P}\left(Z<\frac{180-150}{\sqrt{900}}\right) \\ & =\mathrm{P}(Z<1) \end{aligned}$	M1 A1	(2)	Standardising 180 with values from (a)(iii) but must involve AWRT (0.84134)
(ii)	$\begin{aligned} & \mathrm{P}(W-V>60)= \\ & \mathrm{P}(D>60)=\mathrm{P}\left(Z>\frac{60-35}{\sqrt{475}}\right) \\ & \quad=\mathrm{P}(\mathrm{Z}>1.147)=1-\mathrm{P}(\mathrm{Z}<1.147) \\ & =1-(0.873 \text { to } 0.875)=\underline{\mathbf{0 . 1 2 5} \text { to } \mathbf{0 . 1 2 7}} \end{aligned}$	M1 M1 A1	(3)	Standardising 60 with values from (a)(iv) but must involve Area change; can be implied by any final answer < 0.5 AWFW (0.12567)
			5	
		Total	13	

Q	Solution	Marks	Total	Comments
5 (a)	\bar{D} has a normal distribution with $\text { mean }=\underline{\mathbf{0}}$ and $\begin{aligned} \text { variance }=\frac{\sigma^{2}}{n}+1.5^{2} \times \frac{\sigma^{2}}{n} & \\ & =\frac{3.25 \sigma^{2}}{n} \end{aligned}$	B1 B1 M1 A1	4	Normal CAO Must have (+ sign) \& (1.5 or 1.5^{2}) but allow no $(\div n)$ OE single expression
(b)	$\begin{aligned} & \mathrm{H}_{0}: \quad \mu_{X L}=1.5 \mu_{L} \\ & \mathrm{H}_{1}: \quad \mu_{X L} \neq 1.5 \mu_{L} \\ & 5 \% \Rightarrow z=\underline{(\pm) \mathbf{1 . 9 6}} \\ & \mathrm{z}=\frac{\|2261-1.5 \times 1509\|}{\sqrt{\frac{3.25 \times 4.5^{2}}{50}}}=\frac{ \pm 2.5}{\sqrt{1.31625}} \\ & \\ & =\underline{(\pm) 2.18} \end{aligned}$ Evidence, at 5\% level, that claim is not supported	B1 B1 M1 M1 A1 Adep1	6	B1 both; allow any valid notation AWRT (1.95996) Numerator; allow (2261-1509) Denominator; allow $\sqrt{2 \times 4.5^{2} / 50} \mathrm{OE}$ AWRT (2.17907) Dep on z-value and CV Must have consistent signs
		Total	10	

Q	Solution	Marks	Total	Comments
$\begin{gathered} \hline 6 \\ \text { (a) } \end{gathered}$	$\begin{aligned} & \mathrm{E}(X)=\sum_{x=0}^{\infty} x \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}= \\ & \lambda \sum_{x=1}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-1}}{(x-1)!}= \\ & \text { with } y= \\ & x-1 \\ & \lambda \sum_{y=0}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{y}}{y!}=\lambda \times 1=\lambda \end{aligned}$	M1 M1 A1	(3)	Used; ignore limits until A1 Factor of λ plus x ! to $(x-1)$! Fully complete and correct derivation AG
	$\begin{gathered} \mathrm{E}(X(X-1))=\sum_{x=0}^{\infty} x(x-1) \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}= \\ \lambda^{2} \sum_{x=2}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-2}}{(x-2)!}=\lambda^{2} \end{gathered}$	M1 A1	(2)	Used; ignore limits until A1 Factor of λ^{2} plus x ! to $(x-2)$! and fully complete and correct derivation
	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=$ $E(X(X-1))+\lambda-\lambda^{2}=\lambda$	M1 A1	(2)	Used Fully complete and correct derivation
Note	1 Other derivations are possible throughout (a)			
			7	
(b)(i)	$\begin{array}{ll} & \underline{\mathbf{P o}(\mathbf{0 . 7 5)}} \\ P(0 \text { faults })=\mathrm{e}^{-0.75} & =\underline{\mathbf{0 . 4 7 2}} \end{array}$	B1 B1	2	PI AWRT (0.47237)
(ii)	$\operatorname{Po}(37.5) \Rightarrow \mathbf{N}(37.5,37.5)$	B1		Normal with mean $=$ variance $=37.5$ in (A) or (B)
(A)	$\begin{aligned} & \mathrm{P}(\mathrm{~F}<30)=\mathrm{P}\left(\mathrm{Z}<\frac{29.5-37.5}{\sqrt{37.5}}\right) \\ & =\mathrm{P}(\mathrm{Z}<-1.30639)=1-\mathrm{P}(\mathrm{Z}<1.30639) \end{aligned}$	M1 m1		Standardising (29.5 or 30 or 30.5) with C's mean $=$ variance Area change; can be implied by any final answer < 0.5
	$=\underline{0.095 ~ t o ~} 0.097$	A1	(4)	AWFW (0.09571)
(B)	$\begin{aligned} & \mathrm{P}(35 \leq \mathrm{F} \leq 45)= \\ & \mathrm{P}(\mathrm{~F} \leq 45.5 \text { or } 45)-\mathrm{P}(\mathrm{~F} \leq 34.5 \text { or } 35)= \end{aligned}$	M1		Area difference
	$\mathrm{P}(\mathrm{Z}<\underline{\mathbf{1 . 3 1}})-\mathrm{P}(\mathrm{Z}<\underline{\mathbf{0 . 4 9}})$	A1		Both AWRT (1.30639 \& 0.48990)
	$=\underline{0.591}$ to 0.597	A1	(3)	AWFW (0.59219)
SC	$\mathbf{1}$ Use of Poisson: (A) 0.092 (AWRT) \Rightarrow B2 \quad (B) 0.582 (AWRT) \Rightarrow B1 (max of 3 marks)			
			7	
	Total for (a) \& (b)		16	

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

